
RealSpeak Telecom
Software Development Kit

R ea l S p ea k v 4 . 0 M a nu a l



Notice
Copyright © 1995-2005 by ScanSoft, Inc. All rights reserved.
ScanSoft, Inc. provides this document without representation or warranty of any kind. ScanSoft, Inc. reserves the right
to revise this document and to change the information contained in this document without further notice.
Realspeak, DialogModules, OpenSpeech, Productivity Without Boundaries, ScanSoft, the ScanSoft logo,
SMARTRecognizer,SpeechCare, Speechify, SpeechSecure, SpeechSpot, SpeechSite, SpeechWorks, the SpeechWorks
logo, and SpeechWork-sHere are trademarks or registered trademarks of ScanSoft, Inc. or its licensors in the United
States and/or other coun-tries.
Portions of the OpenSpeech Recognizer Software are subject to copyrights of AT&T Corp., E-Speech Corporations,
Bell Communications Research, Inc., European Telecommunications Standards Institute and GlobeTrotter Software,
Inc. GoAhead WebServer Copyright © 2004 GoAhead Software, Inc. All Rights Reserved.
U.S. Patent Nos. 5,634,087; 5,839,103; 5,862,519; 5,995,928; 5,809,494; 5,765,130; 6,061,651; 6,173,266;
6,519,561; 6,539,352; US6665641 and EP1501075. One or more patents may be pending in the United States and other
countries.
Without limiting the rights under copyright reserved above, no part of this document may be reproduced, stored in or
introduced into a retrieval system, or transmitted in any form or by any means, including, without limitation, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of ScanSoft, Inc.

Published by:
ScanSoft, Inc.
Worldwide Headquarters
9 Centennial Drive
Peabody, MA 01960
United States

RealSpeak Telecom for Windows Software Development Kit User's Guide and Programmer's Reference
V4.0 © - December 2005



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/3

Table of Contents

INTRODUCTION ........................................................................................ 16

Introduction to RealSpeak....................................................................................................................16

Organization of this manual.................................................................................................................16

Contacting ScanSoft ..............................................................................................................................17
Defect Report Form ...........................................................................................................................17

System Overview ...................................................................................................................................17
Introduction........................................................................................................................................17
API Support........................................................................................................................................18
Markup Support..................................................................................................................................18
Product Support..................................................................................................................................18
Input/Output behavior of RealSpeak ..................................................................................................19

Three different text input techniques ..............................................................................................19
Presentation of the input text .........................................................................................................19
Language and voice switching.........................................................................................................19
Audio output streaming..................................................................................................................19

Modes of operation: in-process and Client/Server...............................................................................20
In-process mode.............................................................................................................................20
Client-Server mode.........................................................................................................................22

Use of RealSpeak in telephony environments .....................................................................................27

New features for RealSpeak 4.0............................................................................................................28

INSTALLATION GUIDE.............................................................................. 31

Licensing ...............................................................................................................................................31
Licensing - Important note..................................................................................................................31
Overview of licensing..........................................................................................................................31

Installation on Windows .......................................................................................................................32
Installation Steps for Windows............................................................................................................32

Install the common installer ...........................................................................................................32
Install the voice specific installer.....................................................................................................35
Configuring the licensing ................................................................................................................37
Running a demo program ...............................................................................................................38

Installation on Linux.............................................................................................................................39
Installation Steps for Linux .................................................................................................................39

Step 1: Install the common components .........................................................................................39
Step 2: Install the purchased voices.................................................................................................39
Step 3: Install the licensing components .........................................................................................39
Step 4: Configuring and starting of the licensing .............................................................................39
Step 5: Updating your environment settings....................................................................................40
Step 6: Running a sample program .................................................................................................41

Environment variables ..........................................................................................................................42

RealSpeak Components ........................................................................................................................43



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/4

RealSpeak API library .........................................................................................................................43
TTS API support libraries ...................................................................................................................43
TTS server ..........................................................................................................................................44
Engine and language libraries ..............................................................................................................44
Demo programs ..................................................................................................................................44

DEPLOYING REALSPEAK .......................................................................... 46

Introduction ..........................................................................................................................................46

In-process use of RealSpeak ................................................................................................................47
Intro ...................................................................................................................................................47
API Call Sequence...............................................................................................................................47
Demonstration applications ................................................................................................................49

Standard Demo ..............................................................................................................................49
Some comments on the implementation.........................................................................................50
Standardex Demo...........................................................................................................................50
Some comments on the implementation.........................................................................................52
4SML Demo ..................................................................................................................................53
Some comments on the implementation.........................................................................................53

Client/server use of RealSpeak ............................................................................................................54
Intro ...................................................................................................................................................54
Running the TTS Server......................................................................................................................54

Intro...............................................................................................................................................54
Configuring the server ....................................................................................................................54
Specifying the installation directory.................................................................................................55

API Call sequence ...............................................................................................................................55
Demonstration applications ................................................................................................................56

Twonode Demo .............................................................................................................................56
Some comments on the implementation.........................................................................................57
Dict_n_rules Demo........................................................................................................................57
Some comments on the implementation.........................................................................................59

RealSpeak Parameters ..........................................................................................................................60
Introduction........................................................................................................................................60
Use of Configuration Files ..................................................................................................................61
Setting of Parameters via the API........................................................................................................61

Non-speak parameters ...................................................................................................................61
Speak Parameters ..........................................................................................................................61

Text Markup .......................................................................................................................................62
Overview of RealSpeak parameters .....................................................................................................62

Use of RealSpeak in telephone or dialogue applications ...................................................................68
Multiple engine instances ....................................................................................................................68
Real-time responsiveness and audio streaming.....................................................................................69

REALSPEAK API ......................................................................................... 72

New and Changed in RealSpeak 4.0 API ............................................................................................72

Defined Data Types ..............................................................................................................................74
HTTSDICT ........................................................................................................................................74
HTTSDCTEG....................................................................................................................................74
HTTSINSTANCE..............................................................................................................................74
HTTSMAP .........................................................................................................................................74
HTTSVECTOR..................................................................................................................................74



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/5

TTSRETVAL .....................................................................................................................................75
LH_SERVER_INFO .........................................................................................................................75
LH_SDK_SERVER ...........................................................................................................................75
TTSCallBacks .....................................................................................................................................76
TTSPARM..........................................................................................................................................76
TTS_PARAM .....................................................................................................................................79
TTS_PARAM_VALUE_T..................................................................................................................80
TTS_PARAM_T.................................................................................................................................80
TTS_FETCHINFO_T .......................................................................................................................81
SpeakData (PSpeakData).....................................................................................................................82
DictionaryData, (PDictionaryData) .....................................................................................................87
G2P_DICTNAME .............................................................................................................................88
TTS_Marker .......................................................................................................................................89
TTS_Event .........................................................................................................................................89
TTS_MarkPos.....................................................................................................................................91
TTS_BookMark ..................................................................................................................................91
TTS_PhonemeMark............................................................................................................................93
TTS_SentenceMark.............................................................................................................................93
TTS_ParagraphMark ...........................................................................................................................93
TTS_WordMark..................................................................................................................................94

Function Descriptions ..........................................................................................................................95
TtsInitializeEx.....................................................................................................................................95
TtsInitialize .........................................................................................................................................96
TtsUninitialize.....................................................................................................................................97
TtsProcessEx ......................................................................................................................................98
TtsProcess ..........................................................................................................................................99
TtsStop .............................................................................................................................................100
TtsSetParam......................................................................................................................................101
TtsGetParam ....................................................................................................................................104
TtsSetParams ....................................................................................................................................105
TtsGetParams ...................................................................................................................................106
TtsLoadUsrDictEx............................................................................................................................107
TtsLoadUsrDict ................................................................................................................................108
TtsUnloadUsrDictEx ........................................................................................................................109
TtsUnloadUsrDict ............................................................................................................................110
TtsEnableUsrDictEx.........................................................................................................................111
TtsEnableUsrDict .............................................................................................................................112
TtsDisableUsrDictEx ........................................................................................................................113
TtsDisableUsrDict ............................................................................................................................114
TtsDisableUsrDictsEx ......................................................................................................................115
TtsLoadG2PDictList.........................................................................................................................116
TtsUnloadG2PDictList .....................................................................................................................117
TtsGetG2PDictTotal ........................................................................................................................118
TtsGetG2PDictList...........................................................................................................................119
TtsMapCreate ...................................................................................................................................120
TtsMapDestroy .................................................................................................................................121
TtsMapSetChar .................................................................................................................................122
TtsMapSetU32 ..................................................................................................................................123
TtsMapSetBool .................................................................................................................................124
TtsMapGetChar ................................................................................................................................125
TtsMapFreeChar ...............................................................................................................................126
TtsMapGetU32 .................................................................................................................................127
TtsMapGetBool ................................................................................................................................128
TtsCreateEngine ...............................................................................................................................129
TtsRemoveEngine ............................................................................................................................130
TtsResourceAllocate .........................................................................................................................131
TtsResourceFree ...............................................................................................................................132



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/6

User Callbacks.....................................................................................................................................133
TTSSOURCECB ..............................................................................................................................133
TTSDESTCB ...................................................................................................................................135
TTSEVENTCB ................................................................................................................................136

Error Codes..........................................................................................................................................137

SAPI5 COMPLIANCE ................................................................................. 141

API Support .........................................................................................................................................141

SAPI5 Interface ...................................................................................................................................143
ISpVoice Interface ............................................................................................................................143

I S p V o i c e : :ISpEventSource ......................................................................................................144
ISpVoice::SetOutput ....................................................................................................................144
ISpVoice::GetOutputObjectToken...............................................................................................144
ISpVoice::GetOutputStream.........................................................................................................144
ISpVoice::Pause............................................................................................................................144
ISpVoice::Resume ........................................................................................................................144
ISpVoice::SetVoice .......................................................................................................................144
ISpVoice::GetVoice......................................................................................................................144
ISpVoice::Speak ...........................................................................................................................144
ISpVoice::SpeakStream.................................................................................................................145
ISpVoice::GetStatus .....................................................................................................................145
ISpVoice::Skip ..............................................................................................................................145
I S p V o i c e : :SetPriority ...............................................................................................................145
ISpVoice::GetPriority ...................................................................................................................145
ISpVoice::SetAlertBoundary .........................................................................................................145
ISpVoice::GetAlertBoundary ........................................................................................................145
ISpVoice::SetRate .........................................................................................................................145
ISpVoice::GetRate........................................................................................................................145
ISpVoice::SetVolume ...................................................................................................................146
ISpVoice::GetVolume ..................................................................................................................146
ISpVoice::WaitUntilDone.............................................................................................................146
ISpVoice::SetSyncSpeakTimeout ..................................................................................................146
ISpVoice::GetSyncSpeakTimeout .................................................................................................146
ISpVoice::SpeakCompleteEvent ...................................................................................................146
ISpVoice::IsUISupported .............................................................................................................146
ISpVoice::DisplayUI.....................................................................................................................146

SAPI5 XML Tags..............................................................................................................................147
Bookmark ....................................................................................................................................148
Context ........................................................................................................................................149
Emph...........................................................................................................................................150
Lang.............................................................................................................................................151
Partofsp .......................................................................................................................................152
Pitch.............................................................................................................................................153
Pron .............................................................................................................................................154
Rate..............................................................................................................................................155
Silence..........................................................................................................................................156
Spell .............................................................................................................................................157
Voice............................................................................................................................................158
Volume ........................................................................................................................................160

Load ScanSoft User Dictionaries .......................................................................................................160

SAPI5 Client/Server ............................................................................................................................161
Required Software.............................................................................................................................161
Required Hardware ...........................................................................................................................162



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/7

Installing SAPI5 Layer ......................................................................................................................162
Change in the Registry ......................................................................................................................162
Modifications in the Configuration File .............................................................................................162
Load User Dictionaries .....................................................................................................................163
Microsoft Lexicon.............................................................................................................................164
Enable Logging .................................................................................................................................164

SSML SUPPORT ......................................................................................... 167

Introduction and Purpose...................................................................................................................167
Links.................................................................................................................................................167

SSML Compliance...............................................................................................................................167
Support for the SSML 1.0 REC September 2004 ...............................................................................167
Legacy support for the SSML 1.0 WD December 2002 .....................................................................168
Legacy Support for the SSML 1.0 WD April 2002 .............................................................................169
Volume Scale Conversion .................................................................................................................170
Rate Scale Conversion .......................................................................................................................171
Break Implementation.......................................................................................................................172
Say-as Support ..................................................................................................................................172
The Lexicon Element........................................................................................................................176

Scansoft SSML Extensions .................................................................................................................177

API functions.......................................................................................................................................178

LANGUAGE IDENTIFIER 1.0.................................................................... 180

Language Identifier 1.0: Preface ........................................................................................................180
Overview ..........................................................................................................................................180
System Requirements ........................................................................................................................180

Size requirements .........................................................................................................................180
OS requirements ..........................................................................................................................181
Software requirements..................................................................................................................181

Installing the Language ID software .................................................................................................182
Installing ...........................................................................................................................................182

Using the Language ID software .......................................................................................................183
Overview ..........................................................................................................................................183
Language set .....................................................................................................................................183
Available Languages and Codings......................................................................................................184
Language Classification .....................................................................................................................185

Tuning Classification ....................................................................................................................185

Language ID API Functions ..............................................................................................................186
Data structure reference ....................................................................................................................187

LID_H.........................................................................................................................................187
LID_SCORE_T...........................................................................................................................187

lid_ObjOpen() ..................................................................................................................................189
lid_ObjClose()...................................................................................................................................190
lid_Identify() .....................................................................................................................................191

USER CONFIGURATION .......................................................................... 193

Overview ..............................................................................................................................................193



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/8

User Dictionaries.................................................................................................................................193
Functional Description......................................................................................................................193

Dictionary substitution rules.........................................................................................................194
Dictionary Format for RS Host version 4.0 .......................................................................................195
Dictionary format for older RealSpeak versions (3.x).........................................................................199

Migration from 3.x to 4.0 format ..................................................................................................200
Case 1: Orthography only ..........................................................................................................200
Case 2: phonetics only ...............................................................................................................201
Case 3: both orthography and phonetic ...................................................................................201

User Dictionary API calls ..................................................................................................................202
Restrictions on user dictionaries ........................................................................................................203
Automated User dictionary Loading ..................................................................................................203
User Dictionary Editor (Windows only) ............................................................................................204

User Rulesets .......................................................................................................................................205
Introduction......................................................................................................................................205
Tuning of text normalization via rulesets ...........................................................................................205
Ruleset format...................................................................................................................................206

Header Section .............................................................................................................................206
D a t a S e c t i o n ..........................................................................................................................207
Rule example................................................................................................................................208
Search-spec ..................................................................................................................................208
Replacement-spec.........................................................................................................................209
Some examples of rules ................................................................................................................209

Restrictions on rulesets .....................................................................................................................210
Effect of rulesets on the TTS performance........................................................................................210
Ruleset API functions .......................................................................................................................210
Sample code......................................................................................................................................211
Automated ruleset loading.................................................................................................................212

Custom G2P Dictionaries ...................................................................................................................213

Custom Voices.....................................................................................................................................214

Configuration Files .............................................................................................................................215

Configuration file format ....................................................................................................................215

Configuration parameters ...................................................................................................................217
Single value parameters .....................................................................................................................217

Environment Variable Overrides ..................................................................................................217
Element .......................................................................................................................................217
Description ..................................................................................................................................217
Default .........................................................................................................................................217
Optional.......................................................................................................................................217
Network Parameters.....................................................................................................................217
Elements ......................................................................................................................................217
Description ..................................................................................................................................217
Default .........................................................................................................................................217
Optional.......................................................................................................................................217
Licensing Parameters....................................................................................................................218
Elements ......................................................................................................................................218
Description ..................................................................................................................................218
Default .........................................................................................................................................218
Speak Parameters .........................................................................................................................219
Elements ......................................................................................................................................219
Description ..................................................................................................................................219
Default .........................................................................................................................................219



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/9

Miscellaneous Server Parameters ..................................................................................................219
Elements ......................................................................................................................................219
Description ..................................................................................................................................219
Default .........................................................................................................................................219
Internet Fetch Cache Parameters ..................................................................................................219
Elements ......................................................................................................................................219
Description ..................................................................................................................................219
Default .........................................................................................................................................219
Internet Fetch Parameters ............................................................................................................220
Elements ......................................................................................................................................220
Description ..................................................................................................................................220
Default .........................................................................................................................................220
Diagnostic and Error Logging Parameters ....................................................................................221
Elements ......................................................................................................................................221
Description ..................................................................................................................................221
Default .........................................................................................................................................221

Multiple Value parameters.................................................................................................................221
inet_extension_rules.....................................................................................................................221
default_dictionaries ......................................................................................................................221
default_rulesets ............................................................................................................................222
license_servers..............................................................................................................................222

REALSPEAK E-MAIL PREPROCESSOR.................................................... 224

Introduction.........................................................................................................................................224

E-Mail Header Processing .................................................................................................................225
Header Field Extraction ...................................................................................................................225
Header Field Reading ......................................................................................................................226

E-Mail body processing......................................................................................................................227
Message Extraction..........................................................................................................................227
Text Normalization ..........................................................................................................................227

Customizing the E-Mail Preprocessor...............................................................................................227

Support for markup in E-mail mode..................................................................................................227
Native markup ..................................................................................................................................228
SSMLmarkup ....................................................................................................................................228

E-mail Preprocessor API functions ...................................................................................................228
Sample code......................................................................................................................................228

SPEECHIFY API......................................................................................... 231

Introduction.........................................................................................................................................231

API Reference......................................................................................................................................231

Calling convention ..............................................................................................................................231

SDK’s preferred character set.............................................................................................................232

Result codes.........................................................................................................................................232

SWIttsAddDictionaryEntry( ).............................................................................................................235
Mode............................................................................................................................................235



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/10

Purpose ........................................................................................................................................235
Notes ...........................................................................................................................................235

SWIttsCallback( ) ................................................................................................................................236
Mode............................................................................................................................................236
Purpose ........................................................................................................................................236
Parameters ...................................................................................................................................236
Structures .....................................................................................................................................238
Notes ...........................................................................................................................................240

SWIttsClosePort( ) ..............................................................................................................................242
Mode............................................................................................................................................242
Purpose ........................................................................................................................................242
Parameters ...................................................................................................................................242
See also ........................................................................................................................................242

SWIttsDeleteDictionaryEntry( ).........................................................................................................243
Mode............................................................................................................................................243
Purpose ........................................................................................................................................243
Notes ...........................................................................................................................................243

SWIttsDictionaryActivate( ) ...............................................................................................................244
Mode............................................................................................................................................244
Purpose ........................................................................................................................................244
Parameters ...................................................................................................................................244
See also ........................................................................................................................................245

SWIttsDictionariesDeactivate( ) ........................................................................................................246

SWIttsDictionariesDeactivate( ) ........................................................................................................246
Mode............................................................................................................................................246
Purpose ........................................................................................................................................246
Parameters ...................................................................................................................................246
See also ........................................................................................................................................246

SWIttsDictionaryFree( )......................................................................................................................247
Mode............................................................................................................................................247
Purpose ........................................................................................................................................247
Parameters ...................................................................................................................................247
See also ........................................................................................................................................247

SWIttsDictionaryLoad( ) ....................................................................................................................248
Mode............................................................................................................................................248
Purpose ........................................................................................................................................248
Parameters ...................................................................................................................................248
Structures .....................................................................................................................................248
See also ........................................................................................................................................251

SWIttsGetDictionaryKeys( ) ...............................................................................................................252
Mode............................................................................................................................................252
Purpose ........................................................................................................................................252
Notes ...........................................................................................................................................252

SWIttsGetParameter( )........................................................................................................................253
Mode............................................................................................................................................253
Purpose ........................................................................................................................................253
Parameters ...................................................................................................................................253
See also ........................................................................................................................................256



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/11

SWIttsInit( ) .........................................................................................................................................257
Mode............................................................................................................................................257
Purpose ........................................................................................................................................257
Parameters ...................................................................................................................................257
Notes ...........................................................................................................................................257
See also ........................................................................................................................................257

SWIttsLookupDictionaryEntry( ) ......................................................................................................258
Mode............................................................................................................................................258
Purpose ........................................................................................................................................258
Notes ...........................................................................................................................................258

SWIttsOpenPort() ...............................................................................................................................259
Mode............................................................................................................................................259
Purpose ........................................................................................................................................259
Notes ...........................................................................................................................................259
See also ........................................................................................................................................259

SWIttsOpenPortEx( )..........................................................................................................................260
Mode............................................................................................................................................260
Purpose ........................................................................................................................................260
Parameters ...................................................................................................................................260
Notes ...........................................................................................................................................261
Example .......................................................................................................................................262
See also ........................................................................................................................................262

SWIttsPause( ) .....................................................................................................................................263
Mode............................................................................................................................................263
Purpose ........................................................................................................................................263
Parameters ...................................................................................................................................263
Notes ...........................................................................................................................................263
See also ........................................................................................................................................263

SWIttsPing( ) .......................................................................................................................................264
Mode............................................................................................................................................264
Purpose ........................................................................................................................................264
Parameters ...................................................................................................................................264
See also ........................................................................................................................................264

SWIttsResetDictionary( )....................................................................................................................265
Mode............................................................................................................................................265
Purpose ........................................................................................................................................265
Notes ...........................................................................................................................................265

SWIttsResourceAllocate( )..................................................................................................................266
Purpose ........................................................................................................................................266
Parameters ...................................................................................................................................266
Notes ...........................................................................................................................................266
See also ........................................................................................................................................266

SWIttsResourceFree( )........................................................................................................................267
Purpose ........................................................................................................................................267
Parameters ...................................................................................................................................267
Notes ...........................................................................................................................................267
See also ........................................................................................................................................267

SWIttsResume( ) .................................................................................................................................268
Mode............................................................................................................................................268



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/12

Purpose ........................................................................................................................................268
Parameters ...................................................................................................................................268
Notes ...........................................................................................................................................268
See also ........................................................................................................................................268

SWIttsSetParameter( ).........................................................................................................................269
Mode............................................................................................................................................269
Purpose ........................................................................................................................................269
Notes ...........................................................................................................................................269
See also ........................................................................................................................................271

SWIttsSpeak( ) .....................................................................................................................................272
Mode............................................................................................................................................272
Purpose ........................................................................................................................................272
Parameters ...................................................................................................................................272
Notes ...........................................................................................................................................272
See also ........................................................................................................................................273

SWIttsSpeakEx( ) ................................................................................................................................274
Mode............................................................................................................................................274
Purpose ........................................................................................................................................274
Parameters ...................................................................................................................................274
Structures .....................................................................................................................................274
See also ........................................................................................................................................276

SWIttsStop( ) .......................................................................................................................................277
Mode............................................................................................................................................277
Purpose ........................................................................................................................................277
Parameters ...................................................................................................................................277
Notes ...........................................................................................................................................277
See also ........................................................................................................................................277

SWIttsTerm( )......................................................................................................................................278
Mode............................................................................................................................................278
Purpose ........................................................................................................................................278
Parameters ...................................................................................................................................278
Notes ...........................................................................................................................................278
See also ........................................................................................................................................278

SPEECHIFY EMAIL PRE-PROCESSOR .................................................... 280

Introduction.........................................................................................................................................280
Features ............................................................................................................................................280

Order of API calls................................................................................................................................281

FUNCTIONALITY OF THE E-MAIL PRE-PROCESSOR.......................... 283

In This Paragraph ...............................................................................................................................283

Supported message formats ...............................................................................................................284

Default behavior ..................................................................................................................................285
Header processing.............................................................................................................................285

Discarding header lines.................................................................................................................285
Reading From lines ......................................................................................................................286



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/13

Subject line abbreviations .............................................................................................................286
Body processing ................................................................................................................................286

Discarding data ............................................................................................................................286
Multiple punctuation marks ..........................................................................................................287
Embedded e-mail messages ..........................................................................................................287

Signature processing..........................................................................................................................288
MIME format ...................................................................................................................................288

Modes...................................................................................................................................................289

USING THE E-MAIL SUBSTITUTION DICTIONARY ............................. 290

In This Paragraph ...............................................................................................................................290

File format ...........................................................................................................................................290

Dictionary entries ................................................................................................................................291

Comments and escapes ......................................................................................................................292

Notifications ........................................................................................................................................292

API REFERENCE....................................................................................... 295

In This Paragraph ...............................................................................................................................295

Calling convention ..............................................................................................................................295

Result codes.........................................................................................................................................296

SWIemailInit( )....................................................................................................................................297
Mode: Synchronous......................................................................................................................297
Notes ...........................................................................................................................................297

SWIemailProcess( ) .............................................................................................................................298
Mode: Synchronous......................................................................................................................298
Notes ...........................................................................................................................................298

SWIemailTerm( ) ................................................................................................................................299
Mode: Synchronous......................................................................................................................299

APPENDICES ............................................................................................. 301

Appendix: TTSPARM member values ..............................................................................................301

Appendix: RealSpeak API Function Directory .................................................................................303

Appendix: Running a TTS server as a service (Windows only) .......................................................305

Appendix: Port density simulator.......................................................................................................306

Appendix: Copyright and Licensing for third party software ..........................................................307
ADAPTIVE Communication Environment (ACE)...........................................................................307
Apache Group ..................................................................................................................................309
The Flite Speech Synthesis System ....................................................................................................310
Dinkumware C++ Library for Visual C++ .......................................................................................310



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietay
Programmer's Guide Table of Contents/14

RSA Data Security, Inc. MD5 Message-Digest Algorithm..................................................................310
ICU...................................................................................................................................................310
PCRE ...............................................................................................................................................311

Appendix: RealSpeak Languages ......................................................................................................313

Appendix: Tips for using RealSpeak .................................................................................................315
Operating System Restrictions...........................................................................................................315
Optimal Audio Buffer size ................................................................................................................315
Limiting delays when internet fetching is used ...................................................................................315
Binary versus textual user dictionaries ...............................................................................................316



RealSpeak Telecom
Software Development Kit

Chapter I
Introduction

Programmer’s Guide



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/16

Introduction

Introduction to RealSpeak
This guide provides operational instructions for the RealSpeak
Telecom Text-To-Speech (TTS) system. It reviews the functionality
of the system and explains how the various APIs can be used to
integrate TTS into an application, and describes the ways in which the
user can customize the pronunciation of input texts.

Organization of this manual
The following table shows the organization of this manual:

Chapter I: Introduction describes this guide and the technical
support services for the RealSpeak TTS product.
It also explains the architecture of the TTS system and the new
features of the RealSpeak v4 release.

Chapter II: Installation explains how to install the SDK and
configure the license protection.

Chapter III: Deploying RealSpeak describes the use of the API
for various system configurations, illustrated by a discussion of the
demonstration applications.

Chapter IV: RealSpeak API contains a detailed explanation of all
the API functions, data structures and type definitions.

Chapter V: SAPI5 Compliance describes the support for the
Microsoft SAPI5 interface.

Chapter VI: SSML Support describes the support for the XML-
based SSML v1.0 markup language.
RealSpeak extends SSML with a number of Scansoft specific
elements/attributes. The set supported by Scansoft is called
“ScanSoft SSML” (4SML).  

Chapter VII: Language Identifier describes the language identifier
component and his API.

Chapter VIII: User Configuration describes the different ways in
which a user can tune RealSpeak. It describes User Dictionaries, User



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/17

Rulesets, Custom G2P dictionaries, Custom Voices and
Configuration Files.

Chapter IX: RealSpeak Email Pre-Processor

Chapter X: Speechify API describes the support for the SWItts API
of Speechify 3.0. This support eases the migration of existing
Speechify based integrations and applications to the next-generation
RealSpeak products that incorporate Speechify technology. New
software should only be developed using the native RealSpeak APIs
or the Microsoft SAPI 5 APIs, however.

Chapter XI: Speechify Email Pre-Processor

The appendices provide additional information for using the SDK.
They cover such topics as “RealSpeak API Function Reference”,
“Running a TTS Server as a Service”, “RealSpeak Languages”etc.

Contacting ScanSoft
ScanSoft wants you to get the most from its software. To receive
technical support from ScanSoft, Inc., visit
http://developer.scansoft.com.
This site requires a customer username and password.
You can also visit http://www.scansoft.com for general corporate,
product, marketing, and sales information.

Defect Report Form

If you believe that you have found a defect in the RealSpeak Telecom
software, please contact technical support using the contact
information provided above. In reporting the problem you must
supply all of the information described in the defect report form,
which is provided as a plain text file named
DEFECT_REPORT_FORM on the product CD. The easiest way to
use the form is to copy the text from the form into an email and send
it to technical support along with any required attachments.

System Overview

Introduction

This section describes:
 API Support



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/18

 Markup Support
 Product Support
 New features of RealSpeak v4
 The input/output behavior of RealSpeak: the different input

mechanisms and audio streaming
 The modes of operation: in-process and Client/Server
 Use of RealSpeak in telephony environments

API Support

RealSpeak Telecom V4.0 supports the following API’s:
 New RealSpeak Telecom 4.0 API
 Old RealSpeak Telecom 3.51 API
 Microsoft SAPI 5
 Speechify 3.0 API: RealSpeak Telecom almost fully supports

the SWItts API of Speechify 3.0. This support eases the
migration of existing Speechify based integrations and
applications to the next-generation RealSpeak products that
incorporate Speechify technology. New software should only
be developed using the native RealSpeak APIs or the
Microsoft SAPI 5 APIs, however.

Markup Support

The input text can be marked up to control aspects of the generated
speech such as voice, pronunciation, volume, rate, etc.
RealSpeak supports several markup languages:

 The RealSpeak native markup language which is explained in
the language specific User’s Guide of each RealSpeak 
language.

 W3C SSML v1.0 (XML-based) with some proprietary
extensions, called 4SML. This is described in the“SSML 
Support” chapter.

 SAPI v5 XML tags. The support for SAPI is described in the
“SAPI5 compliance” chapter. 

The RealSpeak API supports two markup languages: the native one
and 4SML (SSML with some proprietary extensions). The same
markup languages are supported when the Speechify API is used.
SAPI5 tags are supported when the SAPI interface is used.

Product Support

RealSpeak Telecom V4.0 can be used with the following
SpeechWorks Solutions from ScanSoft:



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/19

 SWMS 3.1
RealSpeak Telecom V4.0 has been used for integration in our
MRCP product line, SWMS 3.1. For more information please
read the SWMS 3.1 documentation or visit
http://developer.scansoft.com

Input/Output behavior of RealSpeak

Three different text input techniques

The input text can be provided by the application in three ways: as an
input stream, a document specified via a URI or a text buffer.
The input stream method relies on the use of the TTS source call-
back function, implemented by the application. This function is
called by the RealSpeak engine when it needs to receive a next block
of input text. Figure I-1 illustrates this mode of input. RealSpeak
v3.5 supported only this input technique.
The input can also be specified as a document specified via a URI.
RealSpeak supports documents on an HTTP server and local files.
Figure I-2 illustrates this mode of input. This method is particularly
useful in Client/Server configurations with multiple servers: the input
texts can be stored on a central Web server. RealSpeak supports
caching of the retrieved documents and use of a proxy server.
The third input way is to provide a text buffer when the TTS Process
function is called.

Presentation of the input text

The input text can be marked up to control aspects of the generated
speech such as voice, pronunciation, volume, rate, etc.
As already described under the “Markup Support” section above, 
RealSpeak supports three markup languages:

 The RealSpeak native markup language
 W3C SSML v1.0 with some proprietary extensions, called

4SML
 SAPI v5 XML tags

RealSpeak supports a wide range of character sets and encodings.
The engine handles the transcoding of the input text to the native (or
internal) character set of the active language.

Language and voice switching

The active language and voice can be specified when a TTS engine
instance is initialized, in-between the initialization and the TTS
request, or during the processing of input text (via the markup). The
voice and language can be switched at any location in the input text
but will result in a sentence break.

Audio output streaming



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/20

The audio output is streamed to the application via the Destination
call-back. This is a handler implemented by the application which
receives the audio chunk by chunk. The application can specify the
desired audio format (A-law, mu-law, 16-bit linear etc).

Modes of operation: in-process and Client/Server

ScanSoft RealSpeak Telecom can operate in client/server and in-
process (or single process) mode.

In-process mode

For in-process mode the RealSpeak service is fully implemented by
libraries (primarily DLL’s or shared objects) linked in by the user’s 
application. All TTS components are then running in the same
process, so there is no communication overhead.
Figure I-1 shows an example system layout of an application using
RealSpeak in-process. Only one RealSpeak voice, being American
English Jill, has been installed on the machine. The application has
created one RealSpeak engine instance via the RealSpeak API. The
figure shows that the application has chosen to provide the text input
via the TTS source call-back. In that case the input text is streamed
to the RealSpeak engine instance. The audio streams in the opposite
direction from the engine instance back to the application.



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/21

Linux machine

application
Welcome to ScanSoft's
Text To Speech sample

Program.

text

audio

Am. English Jill
database

module using
RealSpeak

RealSpeak API

audio

R
S

in
st

an
ce

#1

text

audiotext

Figure I-1
When the application specifies the text input for a Speak request via a
URI, the architecture looks like Figure I-2. In that case, the
RealSpeak instance will rely on the Scansoft internet fetch component
to retrieve the content of the URI. Note that this is a simplified
presentation of the internet fetching: in reality the fetch library uses a
configurable cache, so the overhead of retrieving previously
downloaded documents is minimal.



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/22

LA
N

Welcome to
RealSpeak.

Willkommen bei der
Demonstration des
Sprach-Synthese-

System.

Linux machine

application

audio

Am. English Jill
database

module using
RealSpeak

RealSpeak API

R
S

in
st

an
ce

#1

URI=x

URI=x audio

audio

x=http://harpo/realspeak/
demo_us_english.txt

HTTP
Get re-
quest

(URI=x)

HTTP
Get
res-

ponse
(text)

Document Server
harpo

HTTP server

Internet fetch
lib

URI=x doc

Figure I-2

Client-Server mode

In client/server mode the lightweight RealSpeak client is integrated
into the user’s application that needs TTS services. The client
implements the RealSpeak API layer and each RealSpeak client
instance created via the API can be used to send TTS requests to a
certain RealSpeak server.
The RealSpeak server (also called TTS server) is a standalone
executable that can be started from the command line or, on
Windows, as a Windows service. The server can reside on any
machine on the network. and clients and servers do not have to run
on the same operating system. A server instance is created when a
client instance is created and they are connected for their entire life
span. A server instance performs the actual TTS conversion and



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/23

sends the generated speech to the corresponding client instance. The
client instance then passes it back to the application.
The TTS Server can create multiple server instances and each instance
runs in a separate thread; so each RealSpeak server can handle
multiple requests (one per instance) simultaneously.
A TTS server instance can handle TTS requests for all the RealSpeak
languages and voices that have been installed on the server machine.
And there is no hard limit on the number of languages and voices
that can be installed on a single server machine.
The client instance tells the server which initial language, accent
and/or voice to use for the next TTS request. Note that the input
text for the TTS request can contain markup to switch the language
and/or voice.
Multiple TTS server processes (or machines) can work with multiple
clients (or applications).
RealSpeak is fully multi-threaded, and so can run on multiple CPU
machines very efficiently.
Figure I-3 shows a snapshot of an example system layout with a client
on a Linux machine that is connected with one of two available
servers: one running on a Windows and one on a Linux machine.
The example Linux server has the availability of two RealSpeak
voices: American English “Jill” voice and British English “Emily” 
voice. The figure shows a snapshot of the situation at time x. Before
that time, the application has used the RealSpeak API to create a
RealSpeak server engine instance #1 on the Linux server and a client
instance #1 on the application machine connected with the server
instance. Note that RealSpeak only allows one client instance to be
connected with one server engine instance for the life span of the
client instance.
After the successful initialization of the server and client instance, the
application has requested the client instance to convert an American
English text to speech.
Note that the active language and voice can be specified when the
engine instance is initialized, in-between the initialization and the TTS
request, or during the processing of input text (via the markup).
Figure I-3 shows a snapshot while the server engine instance is
performing TTS for an American English document. The figure
shows that the application has chosen to provide the text input via
the TTS source call-back. In that case the input text is streamed to
the server engine instance via the client instance. The audio streams in
the opposite direction from the server engine instance back to the
application via the client instance.



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/24

LA
N

Linux machine

Windows server

TTS
server

Japanese Kyoko
database

German Steffi
database

Welcome to
RealSpeak.

text

audio

Am.
English

text

audio

module using
RealSpeak

RealSpeak
API

text audio

application

RealSpeak API

text audio

R
S

cl
ie

nt
#1

Linux server

TTS
server

Am. English Jill
database

Brit. English Emily
database

RS server
engine

instance#1

Figure I-3
When at a later point in time, a German text needs to be processed,
the application must create an engine instance on the Windows server
since the Linux server has not been equipped with a German voice.



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/25

The application has the option to keep client instance #1 and
corresponding server engine instance #1 for TTS processing of future
American or British English texts. In any case, a new server engine
instance #2 has to be created on the Windows server; followed by the
creation of a client engine instance which is connected to that server
engine instance. Figure I-4 is a snapshot of the processing of the
German text.



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/26

LA
N

Linux machine

Windows server

TTS
server

Japanese Kyoko
database

German Steffi
database

Willkommen zur
TTS Demo.

text

audio

German
text

audio

Linux machine

TTS
server

Am. English Jill
database

Brit. English Emily
database

module using
RealSpeak

RealSpeak
API

text audio

application

RS server
engine

instance #2

Real Speak
client #2

RealSpeak API

RSclient#2

R
S

cl
ie

nt
#1

text audio

R
S

cl
ie

nt
#2

RS server
engine

instance #1

Figure I-4



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/27

Use of RealSpeak in telephony environments

There are three components to any telephony application using
speech technology:

 The main application
 The Voice Source
 The Engine

The main application is the brains of the entire system and is
responsible for the overall setup and control of the speech engines
and Voice Sources. The main application is the master of the system;
the Voice Source and the Engine are slaves to the main application.
The Voice Source is the point at which voice input or output occurs
in the telephony application. In traditional telephony applications, the
point of entry is the telephony voice board, and the Engine is the
speech Engine (Text-To-Speech and/or Speech Recognition). This
Engine can be running on a different machine.
Telephony applications are designed to service many customers at the
same time.  The concept of “voiceport” is often used in this domain.
Each voice port can service one customer at a time. One port is
usually associated with one telephone line.

There are two major system models, loosely relating to the number of
nodes (computers) that these pieces are running on:

 Single Node–In a single node system, or in-process model,
all components are running on the same computer. This is
the typical configuration in small systems handling a small
number of lines. In the single node system, all voice data can
be routed between the Voice Source and the Engine through
the main application with no network overhead. Figure I-1
and I-2 closely match this configuration. The application will
stream the audio output by the RealSpeak engine to the
Voice Source. Typically, one RealSpeak engine instance will
serve one port.

 Two Node–In a two-node system, or client-server model,
the main application and the Voice Source are located on one
computer and the Engine is located on another. This
configuration allows the application to offload the heavy
Engine processing, allowing the main application to handle
more ports on a single machine. Separating the Engine
creates a modular system that is more fault-tolerant, flexible,
and manageable. In this system, the application can still be
the middleman streaming all voice data between the Engine
and the Voice Source.



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/28

New features for RealSpeak 4.0
The functionality of the TTS system has been improved compared to
the previous release (v3.5x). The ScanSoft RealSpeak SDK has the
following new and changed features for V4.0:

 Support for new RealSpeak v4.0 API while maintaining
support for RealSpeak v3.5 API

 SAPI 5 and Speechify v3 API support come as an integral
part of the SDK

 New Improved User Dictionary Editor. Windows only.
Allows saving to other platform types

 Improved SSML support
o Support for <audio> element to allow for easy

insertion of prerecorded audio files.
o Support for SSML 1.0 Recommendation of

September-2004
 Language identification module has been added
 Extended API functions that support new methods for

specifying the input of the Speak. Before, the TTS source
call-back (input streaming) was the only input method.

o Text input can now also be specified via a URI with
optional fetch properties and cookie jar. Fetch
properties can be especially handy in case of remote
input data (e.g. for specifying a fetch timeout).

o Input can also be provided via a text buffer.
o When one of two above input methods is used, the

content type and character set of the input can be
specified. The content type specifies the document
type: “standard” (use of native markup) versus 4SML 
(or SSML).
This version supports a wide range of character
encodings; RealSpeak now handles the transcoding
of the input text to the native (or internal) character
set of the active language.

 Extended dictionary loading functionality, accessible via new
API function

o Load from URI with optional content-type, fetch
properties and cookie jar

o Load from a memory block

 Support for multiple active user dictionaries with user
specified priorities

o With the new API functions dictionaries are
specified per TTS instance

 Introduction of license protection: a floating licensing
scheme is in use



Introduction

Chapter I

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter I/29

 Extending the number of parameters that can be changed via
the API once a TTS instance is created: sample frequency,
language, voice, etc. More than one parameter can be
switched at a time.

 Support for the signaling of the following types of markers
via the Event callback: user bookmarks, paragraph1, sentence,
word and phoneme markers

1 Paragraph markers are only signaled when paragraphs have been marked in the input
text via the paragraph tag (native <ESC>\p\ tag or SSML <p> element).



RealSpeak Telecom
Software Development Kit

Chapter II
Installation Guide

Programmer’s Guide



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/31

Installation Guide
Licensing

Licensing - Important note

RealSpeak Telecom requires a valid license file to perform TTS
services. This license file is NOT supplied with the software but can
be obtained from Scansoft.

Overview of licensing

RealSpeak Telecom uses run-time licensing that is based on the
number of initialized TTS engine instances, and is co-resident with
LAN based licensing servers. RealSpeak uses the “Flex License 
Manager” (FLEXlm) third-party software to implement a floating
license model, so licenses are not required to be dedicated to a
specific RealSpeak server (or RealSpeak machine for in-process
mode). Instead, one license is needed per active TTS instance,
regardless of the machine it is running on. There are two floating
licensing modes: implicit (the default) and explicit.

Implicit licensing means that licenses are acquired automatically
when a TTS engine instance is created via the TtsInitialize(Ex) API
function and released when the instance is destroyed via
TtsUninitialize.

To support explicit licensing, the functions TtsResourceAllocate
and TtsResourceFree were added to the API. These functions enable
the developer to choose when he wants to acquire and release
licenses.

To configure the licensing to explicit or to implicit mode, an
environment variable can be set. The values for this variable
(SSFT_TTS_LICENSE_MODE) can be ‘default’ or ‘explicit’ where 
‘default’ means implicit mode. When the environment variable is not 
defined, the default or implicit mode will be used.
In client/server mode, licenses are acquired by the TTS server and
the default license mode can then be set via the license_mode
parameter in the server configuration file.
But the application can override the default setting via
TTS_LICENSE_MODE_PARAM parameter which can be set when
a TTS engine instance is created, or via SetParam(s).
An application can determine the mode by calling TtsGetParam using
TTS_LICENSE_MODE_PARAM as name for the parameter. See



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/32

the TtsSetParamentry in the “RealSpeak API” chapter for the
possible values of this parameter.

The FLEXlm components are part of the RealSpeak Telecom
installation package.
A FLEXlm license server must be set up on a machine on the same
logical subnet as the RealSpeak servers or machines in case of in-
process RealSpeak. The document
“./doc/RS_Telecom_TTS_Licensing_Handbook.pdf” under the 
Realspeak installation directory describes the licensing in great detail.
It explains how to obtain and manage licenses and how to install and
configure a license server. Note that this document refers to the in-
process mode of RealSpeak as “all-in-one”.
Some Windows and Linux specific details are also described in the
following Installation sections.

Installation on Windows
Realspeak for Windows can be run on Windows 2000, Windows XP
Professional (client or in-process mode only) and Windows Server
2003.
The installation of RealSpeak Telecom 4.0 is a very straightforward
process that consists out of two major steps: common install and
voice specific install. Both installers consist of a limited number of
input screens which makes it possible for the user to provide the
necessary information and to configure the SDK.
The common installer gives the user the opportunity to:

 Configure the install directory
 Install the license server
 Install RealSpeak Telecom as a windows service.

The voice specific installer uses the information retrieved during the
installation of the common part to determine the target path of the
voice specific installer.

Installation Steps for Windows

Install the common installer

‘Startup’ screen



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/33

Click ‘Next’ to continue.

‘Custom Setup’ screen

Here you can specify which components you want to install. You can
install the common part and the third party licensing software
(FLEXlm). Next to that you can also specify the installation path

Click ‘Next’ to continue.

‘Host service’ screen.



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/34

Here you can specify whether you want the TTS server installed as
Windows Service or not. Uncheck the box if you do not want the
service installed. When checked, the TTS service will be installed with
startup type ‘automatic’(starts automatically when the Windows
system starts). Note that the service’s options can be changed later 
via the “Windows Control Panel” by selecting “Administrative 
Tools/Services/RealSpeak Host".

Click ‘Next’ to continue

‘Ready to install’ screen.

The setup is now ready to install the selected components.



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/35

Click ‘Install’ to continue.

The installer will now install all the selected components.

‘Finish’ screen.

Click ‘Finish’ to complete the installation. 

Install the voice specific installer

Repeat the following for every voice that needs to be installed.



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/36

‘Startup’ screen

Click ‘Next’ to continue.

‘Ready for installation’ screen.

The setup is now ready to install the selected components.

Click ‘Install’to continue.

The installer will now install the selected voice.



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/37

‘Finish’ screen.

Click ‘Finish’ to complete the installation

Configuring the licensing

Please consult the document
“./doc/RS_Telecom_TTS_Licensing_Handbook.pdf” under the 
Realspeak installation directory for detailed information on licensing.
In a nutshell, here's the procedure for installing a FLEXlm license
server on Windows. The license server can also be installed on a
Linux machine.

a) Determine the hostid of the Windows license server
In order to generate a license, Scansoft requires the hostid
(Ethernet address for Windows) of the machine that will run
the license server. The hostid can be obtained as follows:

o change to the directory
%SSFTTTSSDK%\flexlm\components

o and run:
lmutil.exe lmhostid

b) Use the returned hexadecimal digit string to obtain your
license file from the Scansoft and place it on your system.
Consult the Licensing Handbook, section “Obtaining and 
managing licenses, subsection “Generating licenses and 
downloading license files” for the details.

c) Install and Configure the license server
By default, the license software has already been installed
when installing RealSpeak on a Windows machine.
Also by default the installation will configure the “RealSpeak 



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/38

Licensing Service” to start automatically with every system 
reboot. Consult the Licensing Handbook, section
“Configuring and starting the license server” for the details.

d) Configure the RealSpeak server to use the appropriate license
server
Consult the Licensing Handbook,chapter “Configuring 
Licensing on Windows”, section “Configuring RealSpeak on 
Windows” for the details.  When using RealSpeak in
client/server mode this includes updating the RealSpeak
server configuration file variables license_mode and
license_servers.
When using RealSpeak in in-process mode, the only option is
to set the environment variables
SSFT_TTS_LICENSE_MODE and
SSFT_TTS_LICENSE_SERVERS to appropriate values.

Running a demo program

For demonstration purposes, RealSpeak comes with several
applications. The simplest one is the “standard” program. 
This can be run to do a quick verification of the installation.
It runs RealSpeak in-process. It processes one text file which can
contain RealSpeak native markup for the specified language. The
output is one linear 16-bit PCM speech file (with 8kHz sample rate)
named “standard.pcm”. It is explained in more detail in Chapter III, 
section “In-process use of RealSpeak”, subsection “Demonstration
applications”.
Instructions

 Go to the RealSpeak installation directory, e.g. "C:\ program
files\ScanSoft\RealSpeak 4.0" and open a command prompt.

 It should be run as follows:
standard <language> <voice> <engine directory> <text
file>
Running the program without arguments shows a help
screen)
e.g.
standard.exe "American English" Jennifer .\speech
.\api\demos\data\us_english.txt

 If the program returns with error 120, it means that TTS
could not acquire a license. You should check your license
configuration.

 If no error is returned everything went fine and a PCM file
called standard.pcm is generated.



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/39

Installation on Linux
The RealSpeak SDK for Linux RedHat 7.1, 7.2 and 9.0, Linux
RedHat Advanced Server 2.1 and 3.0, Linux RedHat Enterprise WS
3.0, Linux RedHat Enterprise ES 3.0.

RealSpeak Telecom is distributed in RPM format.

The “API install CD” comes with two RPM files, one for the 
RealSpeak common components (including the API libraries) and one
for the licensing components.
A “voice install CD” comes with one RPM file which is voice 
specific.
The default location of the install is /usr/local/ScanSoft/RealSpeak_4.0.
You need to be root or have su permissions to install the software.
The API RPM must be installed first. The RPM's are relocateable.

NOTE: If you do relocate the common components RPM, be sure to
relocate any subsequent voice RPM to the same directory.
Please see the RPM man pages for additional options.

Installation Steps for Linux

Step 1: Install the common components

Insert the API install CD into the CD drive and mount the drive.

rpm -i rs-api-4.0-0.i386.rpm

This will install the RealSpeak common components to the default
directory /usr/local/ScanSoft/RealSpeak_4.0

Step 2: Install the purchased voices
rpm -i rs-<full-voice-spec> -4.0-0.i386.rpm

where <full-voice-spec> is the full specification of the voice to be
installed, e.g. American-English-en-US-Jennifer.

Step 3: Install the licensing components
rpm -i rs-lic-4.0-0.i386.rpm

Step 4: Configuring and starting of the licensing

Please consult
/usr/local/ScanSoft/RealSpeak_4.0/doc/RS_Telecom_TTS_Licensi
ng_Handbook.pdf for detailed information on licensing.



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/40

In a nutshell, here's the procedure for installing a license server on
Linux. The license server can also be installed on a Windows
machine.

e) Determine the hostid of the Linux license server
Before TTS can be performed, a RealSpeak engine instance
requires a license. In order to generate a license Scansoft
requires the hostid (Ethernet address for Linux) of the
machine that will run the Flex License Manager. The hostid
can be obtained as follows:

o open a terminal and run:
/sbin/ifconfig eth0

o from the output copy the numerical string following
HWaddr, e.g.,
00:06:5B:84:28:00

o remove the colons, e.g.,
00065B842800

f) Use this number to obtain your license file from Scansoft.
Consult the Licensing Handbook, section “Generating 
licenses and downloading license files”for the details.

g) Start the license server
o -once you’vereceived the license file, rename it to
“realspeak.lic” and copy itto
/usr/local/ScanSoft/RealSpeak_4.0/flexlm/components

o to manually start the license manager run:
./lmgrd -c realspeak.lic

o to stop the license manger, open a new terminal and
run:
./lmutil lmdown -c realspeak.lic

o there is also the possibility to launch the license
server automatically (see Licensing Handbook)

Step 5: Updating your environment settings

 Set the SSFTTTSSDK variable to point to the RealSpeak
install directory, the default location is
'/usr/local/ScanSoft/RealSpeak_4.0'.
e.g. when using the C shell:
setenv SSFTTTSSDK /usr/local/ScanSoft/RealSpeak_4.0

 Update the PATH environment variable to include:
$SSFTTTSSDK/speech/components/common and
/api/lib
e.g. when using the C shell:
% setenv PATH
$SSFTTTSSDK/speech/components/common:$PATH
% setenv PATH
/usr/local/ScanSoft/RealSpeak_4.0/api/lib:$PATH

 Update the LD_LIBRARY_PATH environment variable to
include:
/usr/local/ScanSoft/RealSpeak_4.0/speech/components/c
ommon and



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/41

/usr/local/ScanSoft/RealSpeak_4.0/api/lib
e.g.

% setenv LD_LIBRARY_PATH
/usr/local/ScanSoft/RealSpeak_4.0/speech/components/c
ommon:$LD_LIBRARY_PATH
% setenv LD_LIBRARY_PATH
/usr/local/ScanSoft/RealSpeak_4.0/api/lib/:$LD_LIBRAR
Y_PATH

 On Redhat AS/ES 3.0 or Redhat AS/ES 4.0 you MUST set
the environment variable LD_ASSUME_KERNEL to the
value 2.4.19. It's imperative to choose this value on the
mentioned Redhat versions.
e.g.

setenv LD_ASSUME_KERNEL 2.4.19
 Configure the RealSpeak server to use the appropriate license

server(s)
When using RealSpeak in in-process mode, set the
environment variables SSFT_TTS_LICENSE_MODE and
SSFT_TTS_LICENSE_SERVERS to appropriate values.
Note that when using RealSpeak in client/server mode the
licensing is configured via the license_mode and
license_servers parameters in the RealSpeak server
configuration file.
Consult the Licensing Handbook, chapter “Configuring 
Licensing on Linux”, section “Configuring RealSpeak on 
Linux” for the details.

Step 6: Running a sample program

For demonstration purposes, RealSpeak comes with several
applications. The simplest one is the “standard” program. 
This can be run to do a quick verification of the installation.
It runs RealSpeak in-process. It processes one text file which can
contain RealSpeak native markup for the specified language. The
output is one linear 16-bit PCM speech file (with 8kHz sample rate)
named “standard.pcm”. It is explained in more detail in Chapter III, 
section “In-process use of RealSpeak”, subsection“Demonstration
applications”.
Instructions

 Open a terminal and change to the RealSpeak installation
directory, e.g. /usr/local/ScanSoft/RealSpeak_4.0

 Make sure you have 'write' access in this dir (you must have
root privileges):
% chmod +w .

 Give the demo program executable rights (or any other demo
program) :
% chmod +x standard

 Run the standard program as follows:
standard <language> <voice> <engine directory> <text



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/42

file>
Running the program without arguments shows a help
screen)
e.g.
% ./standard "American English" Jennifer ./speech
./api/demos/data/us_english.txt

 If the program returns with error 120, it means that TTS
could not acquire a license. You should check your license
configuration.

 If no error is returned everything went fine and a PCM file
called standard.pcm is generated.

Environment variables
Before running RealSpeak the following environment variables
should be set whatever operating system is used. Some variables are
optional, some are only needed on systems running the TTS server or
running TTS in-process. Unix specific environment variables are
described in the “Installation on Unix” section, subsection 
“Installation Steps for Linux”.

Name when Comments
SSFTTTSSDK always, optional RealSpeak install directory, on Windows the

default location is "C:\program
files\ScanSoft\RealSpeak 4.0". On Unix it is
'/usr/local/ScanSoft/RealSpeak_4.0'.
When using the TTS server, it can be
overwritten in the server configuration file.
It can also be specified when a TTS engine
instance is created.

PATH always, required Add
$SSFTTTSSDK/speech/components/common
to the PATH.

TTS_LICENSE_MODE in-process,
optional

License mode
Possible values: default or explicit.
Default value: default
Value‘default’means implicit licensing.
Note that when using RealSpeak in
client/server mode the license mode is
configured via the license_mode parameter in
the RealSpeak server configuration file.
See the Licensing Handbook for more details.

SSFT_TTS_LICENSE_SERVERS in-process,
optional

Port number and hostname of one or more
license server machines.
Value: semi-colon separated list of <port-
number> @<hostname>
Default value: 27000@localhost



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/43

Note that when using RealSpeak in
client/server mode the list of license servers is
configured via the license_servers parameter in
the RealSpeak server configuration file.
See the Licensing Handbook for more details.

RealSpeak Components
The RealSpeak System is made up of a number of components. This
section gives a brief overview of those components. All components
are installed in the RealSpeak installation directory or one of its
subdirectories. Since the installation directory is usually specified via
the SSFTTTSSDK environment variable, this variable is used in the
following text when specifying path names.

RealSpeak API library

The RealSpeak interface to the TTS system is implemented as a
shared object or DLL (with accompanying import library), depending
on the platform.

For example, on Windows, the RealSpeak API library is named
lhstts.dll (with corresponding import library lhstts.lib) and on Unix
lhstts.so.
This is the only library the application is required to link in or
explicitly load in order to use the TTS functionality.

In Client/Server mode, the API library communicates with the TTS
Server, which in turn loads the underlying TTS engine library, which
with the help of the language libraries, does the actual TTS
conversion. In in-process mode, the API library loads the TTS
engine library directly.

Note that RealSpeak v4 comes with a number of additional API’s: 
SAPI5 API (see “SAPI5 Compliance” chapter) and Speechify API
(see “Speechify API”chapter).

TTS API support libraries

The TTS API uses several shared support libraries, like for example
the Internet fetching library used to retrieve documents on an HTTP
server. These libraries are DLLs for Windows and shared objects for
most Unix platforms.
These libraries reside in the “./speech/components/common” 
subdirectory of the RealSpeak installation directory. On Windows,
this subdirectory is automatically added to the path environment
variable by the RealSpeak common installer.



Installation Guide

Chapter II

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter II/44

The libraries are used by the TTS API, the TTS engine, the language
libraries and the TTS Server (see below).

TTS server

The TTS Server is a standalone executable that provides TTS services
to applications using the TTS Client/Server mode of the API. The
TTS Server executable is called ttsserver.exe on Windows, and
ttsserver on all other operating systems. The RealSpeak Telecom
installer installs it in the top-level of the RealSpeak Telecom
installation directory.

The server can reside in any location on any machine on the network.
The TTS Server depends on certain shared support libraries (see the
previous section).

Engine and language libraries

The RealSpeak TTS engine and language libraries are implemented as
shared object files or DLLs, depending on the platform. Both the
TTS API library and the TTS Server dynamically load the TTS engine
library which in turn loads the language libraries when they are
needed to execute TTS requests.

Demo programs

The SDK includes a number of demo programs. Detailed
instructions on how to run them are provided in the “Deploying 
RealSpeak” chapterand the Product Release Notes for your particular
version.



RealSpeak Telecom
Software Development Kit

Chapter III
Deploying RealSpeak

Programmer’s Guide



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/46

Deploying RealSpeak
Introduction

This chapter explains how to deploy the RealSpeak system.
RealSpeak can be operated in a number of different ways, each suiting
a particular type of deployment. First the in-process operation mode
of RealSpeak is described. Then the client/server mode is explained.
Although the RealSpeak client(s) and server(s) can be executed on the
same computer, greater efficiency can often be achieved when the
client(s) and server(s) are executed by different computers connected
via a network.
When performing Text-To-Speech a number of parameters can or
must be set. The“RealSpeak Parameters”section of this chapter
explains the different classes of parameters and how and when they
can be set.
The final section “Use of RealSpeak in telephone or dialogue
applications” describes the typical, often more complex use of
RealSpeak Telecom in telephony environments.



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/47

In-process use of RealSpeak

Intro

The simplest configuration comprises of an“in-process”use of
RealSpeak.This has already been explained in the “System Overview” 
section of the Introduction chapter and figures I-1 and I-2 illustrated
this configuration.
The application designer links the TTS API Library to the application
requiring TTS. The TTS server standalone program is not used at all;
all Realspeak libraries will be directly or indirectly loaded into the
application.

For demonstration purposes, RealSpeak comes with several
applications demonstrating this configuration; these are described
below, but first some typical API call sequences are shown.

API Call Sequence

The following call sequence shows how to use the RealSpeak v4 API
when operating RealSpeak in in-process mode. See the sample
program “standardex”, described below, for extra details and a
demonstration of the new possibilities.
The ‘Application’ component refers to the source code that uses the
API.
This call sequence is using the default, implicit licensing mode.

1. The Application calls the TtsInitializeEx function to create
a TTS engine instance. At that time a number of general
parameters can be specified such as the default language and
voice, the destination call-back used to stream back the audio
to the application, the desired audio format. The source call-
back function pointer can be specified to use input streaming
for the input text. But this is optional since the TTS input
can now also be specified at the time a TTS action is
requested via the ProcessEx function. This new approach
enables the specification of the input via a URI, a filename or
a text buffer. When operating RealSpeak in in-process mode,
the application must specify the path of the engine library
using the szLibLocation member of the TTSPARM structure
passed into the TtsInitialize function.

2. When using dictionaries, the application defines a
DictionaryData structure for each dictionary instance; this
structure describes where to find the dictionary data and how
to use it. This new approach enables references to URI
addresses and supports a number of document types. Fetch
properties can be defined in case of remote access to the



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/48

dictionary data The Application calls TtsMapCreate to
create a map data structure in which all fetch properties can
be defined. The application calls TtsMapGet and
TtsMapSet functions to define these properties in the
created map data structure.

3. When using dictionaries, the Application calls the
TtsLoadUsrDictEx function for each dictionary; this
function returns a handle to a dictionary instance.

4. Call TtsSetParams to specify the initial speak parameters
such as language, voice, volume etc.

5. If the old input call-back method is not used, the Application
sets up a SpeakData structure describing the input text; this
structure supports specifying a URI, a filename or a memory
block. If fetch properties need to be specified, the
Application calls TtsMapCreate to create a fetch property
map. The application then uses the TtsMapSetXXX
functions to add properties to the map one by one.
If the old method of streaming the input via the TTS source
call-back is used, the SpeakData structure members
specifying the input, being uri and data, must be set to NULL.

6. The Application calls the TtsProcessEx function to convert
the input text to audio of the type defined in TTSPARM
(specified in step 1). The input can be specified via the
SpeakData structure (URI or text buffer) or the old source
call-back method. The Process function executes the TTS
action synchronously; it only returns when all the speech
samples have been generated.

7. The audio is streamed back to the application via the
TtsDestCb Destination callback.

8. If required, the Application can perform several
TtsProcessEx calls, with different SpeakData and/or
different DictionaryData instances. When using dictionaries,
TtsEnableUsrDictEx, TtsDisableUsrDictEx and
TtsDisableUsrDictsEx can be used to enable dictionaries,
changes the priorities in which dictionaries are called and
disable dictionaries. The speak parameters can be updated
using the TtsSetParams function. Note that a limited
number of parameters can be updated while TtsProcess(Ex)
is busy (rate and volume). When the input text contains
markup controlling the speech generation, the parameters
will be updated for the course of the current TtsProcess(Ex)
execution, but will be reset to the values set via SetParam(s)
and the dictionary API functions.

9. When using dictionaries, the Application calls the
TtsUnloadUsrDictEx function for each dictionary that has
been loaded by TtsLoadUsrDictEx. This unloads all
dictionary instances in use by the application.

10. When maps of fetch properties are created for either
SpeakData or DictionaryData, the Application calls the



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/49

TtsMapDestroy function for each map that has been
created.

11. The Application calls the TtsUninitialize function to
cleanup the TTS engine instance.

The RealSpeak v3.5 API did not support the xxxEx functions and the
map functions. But we recommend using the new functions.

Demonstration applications

Standard Demo

This is a simple command-line demonstration application which runs
on all platforms. It processes one text file in RealSpeak native input
format (using native markup and native character set for the specified
language). The output is one linear 16-bit PCM speech file (with
8kHz sample rate) named “standard.pcm”.
It should be run as follows:

standard <language> <voice> <engine directory> <text file>

Running the program without arguments, displays the usage and
some examples.

Some examples:

standard “American English” Jill “%SSFTTTSSDK%\speech” 
“%SSFTTTSSDK%\api\demos\data\us_english.txt”

standard 0 0  “%SSFTTTSSDK%\speech” 
“%SSFTTTSSDK%\api\demos\data\us_english.txt”

The parameters (all required) are:

language Language name or number (e.g.
(e.g. 0 specifies “American 
English”)

voice Voice name or number (e.g. 0
specifies the first female voice for
the specified language)

engine directory The speech subdirectory of the
installation directory (which is
specified by the SSFTTTSSDK
environment variable). Specifying
the installation directory also
works.

text file File name of input text in
RealSpeak native input format



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/50

(using native markup and native
character set for the specified
language)

The language and voice numbers are listed in
“%SSFTTTSSDK%\api\inc\lh_ttsso.h”.

The sources and makefiles are installed at
"%SSFTTTSSDK%\api\demos\standard". For Windows, a
Microsoft Developer Studio Project File (.dsp) is available, for UNIX
a makefile to be used with the UINIX. make command is provided.
The user has to comment out the appropriate compile line.

Some comments on the implementation

This source code of this program demonstrates the simplest possible
call sequence to perform TTS using the RealSpeak v3 API functions:
first create and initialize a TTS engine instance via TtsInitialize(),
then process an input text via TtsProcess(), and finally destroy the
TTS engine instance with TtsUninitialize().
This demo shows how the language and voice can already be
specified when the TTS engine instance is created.
When operating RealSpeak in in-process mode, the application must
specify the path of the engine library using the szLibLocation member
of the TTSPARM structure passed into the TtsInitialize function.
See the “API reference” chapter for a description the other members 
of the TTSPARM structure that are set in the demo.
This application provides text input to RealSpeak via the source call-
back implemented by the function CbTtsSource. The output is
received via the call-back function CbTtsDestination. Events or
markers are received via the CbTtsEventNotify function which
ignores all events. All RealSpeak call-backs are specified when
TtsInitialize() is called.

Standardex Demo

This is a simple command-line demonstration application which runs
on all platforms. It processes one text document which can be an
SSML document or a text with RealSpeak native markup.
The text can be presented in whatever character set supported for the
specified language. The input text can be specified via a local filename
or via a URI that refers to a document on an HTTP server. When
internet fetching is used, proxy and disk cache properties can be
specified.
The output is one linear 16-bit PCM speech file (with 8kHz sample
rate) named “standardex.pcm”.
It should be run as follows:

standardex <language> <voice> <engine directory>
( (<input: text file> <content-type>) or <URI>)
( (<proxy server> <proxy port>) or 0) <CachePath>



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/51

Running the program without arguments, displays the usage.
Some examples:
(assuming the demo application is run from the %SSFTTTSSDK%
directory)

 Input from local text file (possibly containing native markup):
standardex“American English”Jennifer ./speech
./api/demos/data/us_english.txt text/plain;charset=iso-
8859-1 0 ./speech/components/common/cache

 Input from local 4SML file:
standardex German Steffi ./speech ./api/demos/data/
german_4sml.ssml application/ssml+xml 0
./speech/components/common/cache

 Input from http:// URI, no use of internet fetch cache:
standardex 0 0 ./speech http://arctic/realspeak/demo.ssml
http://proxy01 80 0 0

 Input from http:// URI, enable the use of the internet fetch
cache:
standardex 0 0 ./speech http://nepal/realspeak/demo.txt
http://proxy01 80 ./speech/components/common/cache
1000

The arguments are:

language Language name or number (e.g.
(e.g. 0 specifies “American 
English”)

voice Voice name or number (e.g. 0
specifies the first female voice for
the specified language)

engine directory The speech subdirectory of the
install directory (which is usually
specified by the SSFTTTSSDK
environment variable)

input: text filename or URI Input text provided via a filename
or a URI. The markup format and
the character set can be any of the
supported ones (see next
argument).

content-type String that describes the type of
content of the input.
This argument is only required
when the input is provided via a
filename. For URI’s that start with
http:.// the argument must not be
present. Then the content type is
determined by the HTTP Server
(only if http:// prefix) or by



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/52

making use of the extension rules
(e.g. .txt document is assumed to
use the native markup and native
character set, .ssml is an SSML
document).
The supported values for content-
type are listed in the API
Reference chapter, section
“Defined Data Types”, item 
“SpeakData”.  E.g.
“text/plain;charset=windows-
1252”

proxy server Name of the proxy server to be
used for internet fetching.
Use value“0” if no proxy server 
has to be used.

proxy port If <proxy server> is not “0”, 
specifies the proxy port number

cache path Directory name for the disk cache
used when fetching URI's.
Use value “0” if caching must be
disabled.

The language and voice numbers are listed in
“%SSFTTTSSDK%\api\inc\lh_ttsso.h”.

The sources and makefiles are installed at
"%SSFTTTSSDK%\api\demos\standardex". For Windows, a
Microsoft Developer Studio Project File (.dsp) is available, for UNIX
a makefile to be used with the UINIX. make command is provided.
The user has to comment out the appropriate compile line.

Some comments on the implementation

This source code of this program demonstrates the use of the main
RealSpeak v4 extended functions: first create and initialize a TTS
engine instance via TtsInitializeEx(), then process an input text via
TtsProcessEx(), and finally destroy the TTS engine instance with
TtsUninitialize(). When calling TtsProcessEx(), a fetch property map
is specified. The map is created using TtsMapCreate() and the
download timeout property is set using TtsMapSetU32().

This application provides text input to RealSpeak via the SpeakData
parameter of the ProcessEx() function: when the input is an HTTP
URI, the URI is specified; else the content of the file is read into a
buffer whose address is set in the data member and the contentType
member refers to the content-type command-line argument.
The output is received via the call-back function CbTtsDestination.
Events or markers are received via the CbTtsEventNotify function
which ignores all events. All call-backs are specified when
TtsInitialize() is called.



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/53

4SML Demo

This is a simple command-line demonstration application which runs
on all platforms. It processes one 4SML text file (see “SSML support 
chapter). The output is one linear 16-bit PCM speech file (with 8kHz
sample rate) named “4sml.pcm”.It is the counterpart of the
“standard” demo for 4SML input. Note that 4SML processing can
also be demonstrated with the standardex demo.
It should be run as follows:

4sml <language> <voice> <engine directory> <text file>

Running the program without arguments, displays the usage and
some examples.

Some examples:

4sml “American English” Jill “%SSFTTTSSDK%\speech” 
“%SSFTTTSSDK%\api\demos\data\us_english_4sml.ssml”

standard 0 0  “%SSFTTTSSDK%\speech” 
“%SSFTTTSSDK%\api\demos\data\us_english_4sml.ssml”

The parameters (all required) are:

language Language name or number (e.g.
(e.g. 0 specifies “American 
English”)

voice Voice name or number (e.g. 0
specifies the first female voice for
the specified language)

engine directory The speech subdirectory of the
install directory (which is specified
by the SSFTTTSSDK
environment variable)

text file Input text in 4SML format
The language and voice numbers are listed in
“%SSFTTTSSDK%\api\inc\lh_ttsso.h”.

The sources and makefiles are installed at
"%SSFTTTSSDK%\api\demos\4sml". For Windows, a Microsoft
Developer Studio Project File (.dsp) is available, for UNIX a makefile
to be used with the UINIX. make command is provided. The user
has to comment out the appropriate compile line.

Some comments on the implementation

This source code of this program demonstrates the simplest possible
call sequence to process an SSML or 4SML file using the RealSpeak



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/54

v3.5 API: first create and initialize a TTS engine instance via
TtsInitialize() and change the markup type parameter to 4SML using
TtsSetParam(), then process a 4SML text via TtsProcess(), and finally
destroy the TTS engine instance with TtsUninitialize().
This application provides text input to RealSpeak via the source call-
back implemented by the function CbTtsSource. The output is
received via the call-back function CbTtsDestination. Events or
markers are received via the CbTtsEventNotify function which
ignores all events. All RealSpeak call-backs are specified when
TtsInitialize() is called.

Client/server use of RealSpeak

Intro

RealSpeak Telecom supports Client/Server functionality. This
configuration has already been explained in the “System Overview” 
section of the Introduction chapter and figures I-3 and I-4 illustrated
this configuration.
The application designer links the TTS API Library to the application
in just the same way as when using RealSpeak in-process, but the use
of the API is slightly different as explained a bit further. The TTS
server standalone program is run on one or more server machines on
the network. Each server can have one or more RealSpeak voices
installed.
The RealSpeak client instances communicate with the TTS server
through a standard TCP/IP socket connection.

Running the TTS Server

Intro

The TTS Server executable is called ttsserver.exe on Windows, and
ttsserver on all other operating systems. The RealSpeak Telecom
installer installs it in the top-level of the RealSpeak Telecom
installation directory, normally specified by the environment variable
SSFTTTSSDK.

Configuring the server

The TTS Server is configured using an XML configuration file, by
default $SSFTTTSSDK/config/ttsserver.xml (Unix) or
%SSFTTTSSDK%\config\ttsserver.xml (Windows), which specifies
a large number of configuration parameters. Some examples of
parameters are: the TCP port number of the RealSpeak service, the
location of the license server, the default speech volume and internet
fetch properties.
To run the server with the ScanSoft provided default configuration,



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/55

change to the directory where the server is installed and run the TTS
server executable with no arguments, such as:

(Windows) ttsserver.exe
(Unix) ttsserver

To run the server with a modified configuration, there are two
options. The first is to modify the default configuration file
ttsserver.xml, then start the server as shown above. However, if you
do so and later install a RealSpeak Telecom service pack or upgrade,
your ttsserver.xml will get overwritten. The second option is to create
a second XML configuration file and use it to augment the default
configuration file. To do so, make a site-specific copy of
ttsserver.xml, such as ttsserver_site.xml. Then open the copy in a text
or XML editor and remove all the parameters except the specific ones
you wish to customize. Then customize those parameters and save it.
Finally, start the TTS Server specifying both configuration files, where
parameters found in the file specified by the second -c argument (the
site-specific settings) override the ScanSoft provided defaults. The
TTS Server allows you to specify as many -c options as you like,
permitting multi-level configuration file inheritance.

(Windows) ttsserver.exe -c
%SSFTTTSSDK%\config\ttsserver.xml -c
%SSFTTTSSDK%\config\ttsserver_site.xml

(Unix) ttsserver -c $SSFTTTSSDK/config/ttsserver.xml -c
$SSFTTTSSDK/config/ttsserver_site.xml

For details on the TTS Server configuration parameters, see the
“Configuration Files” section in the “User Configuration”chapter.

Specifying the installation directory

In Client/Server mode, the TTS Server looks for the TTS engine
library in the directory specified by the -d option when the server
program was started. If the -d option was not specified, it looks for
the engine in the default directory. For the TTS Server, it’s also 
possible to set the SSFTTTSSDK environment variable in the
configuration file. Please note that the environment variable,
SSFTTTSSDK is automatically set by the windows installer. This
does not apply to the UNIX installers.

API Call sequence

An engine instance can be opened in Client/Server mode using the
TtsCreateEngine function, which sets up a connection with a TTS
Server running on a network host., followed by a TtsInitializeEx
call that specifies the server argument returned by the
TtsCreateEngine call. After this point, the call sequence is the same as



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/56

for in-process use of RealSpeak. The only exception is that after
closing a client instance with TtsUnitialize, TtsRemoveEngine
should be invoked to close the connection with the server. Note that
this procedure is in prinicipal no longer required with RealSpeak v4.0,
since TtsCreateEngine and TtsRemoveEngine have become dummy
functions.

Demonstration applications

Twonode Demo

This is a simple command-line application which runs on all
RealSpeak platforms and demonstrates the client/server operation of
RealSpeak. It processes one text file in RealSpeak native input
format. The output is one linear 16-bit PCM speech file with an 8kHz
sample rate named “twonode.pcm”.
Before running the program, one must start the TTS Server
application on the server machine and configure it to provide the TTS
service via the TCP port number 6666. This can for instance be
performed by running the below command from the RealSpeak
installation directory.

ttsserver -p6666 -d.

Then on the client machine run the twonode demo program as
follows:

twonode <language> <voice> <server> <text file name>

Running the program without arguments, displays the usage.

Some examples:

twonode “American English” Jill pegasus
“%SSFTTTSSDK%\api\demos\data\us_english.txt”

twonode 0 0 10.0.1.10 “%SSFTTTSSDK%\speech” 
“%SSFTTTSSDK%\api\demos\data\us_english.txt”



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/57

The parameters (all required) are:

language Language name or number (e.g.
(e.g. 0 specifies “American 
English”)

voice Voice name or number (e.g. 0
specifies the first female voice for
the specified language)

server Name or IP address of TTS
server; the port number is fixed at
6666.

text file name File name of input text in
RealSpeak native input format
(using native markup and native
character set for the specified
language)

The language and voice numbers are listed in
“%SSFTTTSSDK%\api\inc\lh_ttsso.h”.

The sources and makefiles are installed at
"%SSFTTTSSDK%\api\demos\twonode". For Windows, a
Microsoft Developer Studio Project File (.dsp) is available, for UNIX
a makefile to be used with the UINIX. make command is provided.
The user has to comment out the appropriate compile line.

Some comments on the implementation

The source code of this program demonstrates the use of a TTS
server. This program first calls the TtsCreateEngine API function as
explained in the“API Call sequence”section above.
Note that the Parm.szLibLocation field when calling TtsInitialize() is
NULL. This is allowed because TTS is used in client/server mode; in
this case the RealSpeak client will use the SSFTTTSSDK
environment variable to determinate the engine directory.

Dict_n_rules Demo

This is a command-line demonstration application which runs on all
platforms. It demonstrates the deployment of user dictionaries and
rulesets.  The demo can be run as a TTS client when the ‘-s’; option is 
set, else it runs TTS in-process. It generates linear 16-bit PCM files.

It processes a list of text documents which can be SSML documents
or texts with RealSpeak native markup.
The input texts can be specified via a local filename or via a URI that
refers to a document on an HTTP server. A base URI or local file
can be specified.
The output are linear 16bit PCM speech files (with 8kHz sample rate),
one for each input document, named “<root input name without 
extension>.pcm” and written to the specified output directory.
It should be run as follows:



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/58

dict_n_rules -l <language> [-v <voice>] -@ <input text list file> [-d
<install directory>] [-o <output directory>] [-u <user dictionary list
file>] [-r <ruleset list file>] [-b <base URL>] [-s <server name>]

Running the program without arguments, displays the usage.
Some examples:
(assuming the demo application is run from the %SSFTTTSSDK%
directory)

dict_n_rules -l "American English" -v Jill -@ input.lst -u dict.lst -r
ruleset.lst
(in-process use of TTS)
dict_n_rules -l "American English" -v Jill -@ input.lst -u dict.lst -r
ruleset.lst -s Pegasus
(Client/Server use of TTS)

The arguments are:

-l <language> [required] Language name or
number (e.g. (e.g. 0 specifies
“American English”)

-v <voice> [optional] Voice name or number
(e.g. 0 specifies the first female
voice for the specified language)
Default: 0, the first female voice

-d <install directory> [optional] The installation
directory (which is usually
specified by the SSFTTTSSDK
environment variable).
Default: the value of the
environment variable
SSFTTTSSDK

-@ <input text list file> [required] File listing one or more
input documents; the format of
each line: URI or local file name
with optional MIME content-type
(default: left unspecified). If a file
name contains spaces it must be
enclosed by double quotes.
The content-type parameter allows
the specification of the markup
format and the character set, see
SpeakData structure for a
description of the supported
values. Note that forURI’sthat
start with http:.//, RealSpeak can
usually determine the content-type
automatically.



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/59

-o <output directory> [optional]
Default: the current working
directory

-u <user dictionary list file> [optional] File listing one or more
user dictionaries; format of each
line: URI or local file with optional
MIME-type (default: left
unspecified)
Default: no dictionaries

-r <ruleset list file> [optional]File listing one or more
user rulesets; format of each line:
URI or local file with optional
MIME-type (default: left
unspecified)
Default: no rulesets

-b <base URL> Base URI or local file, the path of
this URI or file is used when
loading user dictionaries and
rulesets that are specified with a
relative path name.
Default: undefined

-s <server name> Run in client/server mode using
the specified host (name or IP
address) as server; the port
number is fixed at 6666.
Default: undefined, run TTS in-
process

The language and voice numbers are listed in
“%SSFTTTSSDK%\api\inc\lh_ttsso.h”.

The sources and makefiles are installed at
"%SSFTTTSSDK%\api\demos\dict_n_rules". For Windows, a
Microsoft Developer Studio Project File (.dsp) is available, for UNIX
a makefile to be used with the UINIX. make command is provided.
The user has to comment out the appropriate compile line.

Some comments on the implementation

This source code of this program demonstrates the use of user
dictionaries and rulesets.

The file “dict_n_rules.c” implements the main() function which 
contains all RealSpeak API calls.
The file “listfile.c” implements the class of list files which can be used 
to parse a list file and iterate through it.
If the client/server mode is enabled, the TtsCreateEngine() function
is called first. From that moment, the call sequence is the same as for
in-process mode, apart from the calling of TtsRemoveEngine() at the
end of the program.
A TTS engine instance is created via TtsInitializeEx().



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/60

Then a fetch property map is constructed with TtsMapCreate() and, if
specified on the command line, the URL base and the download
timeout property are set via the appropriate TtsMapSetXxx()
function.
Then each user dictionary specified in the User dictionary list file is
loaded and implicitely enabled with the TtsLoadUsrDictEx()
function. If appropriate, the fetch properties are applied during the
loading.

Each user ruleset specified in the Ruleset list file is loaded and
implicitely enabled with the TtsSetParams() function. If appropriate,
the fetch properties are applied.

Then, each input text document (specified via a file or URI) listed in
the Input text list file, is processed via TtsProcessEx().
This application specifies the input to RealSpeak via the SpeakData
parameter of the ProcessEx() function.: the uri member refers to the
filename or URI. contentType member refers to the content-type
specified in the Input list file. It is set to NULL if the content-type
has not been specified., and then the engine will determine the type
automatically.

Subsequently, all user dictionaries are disabled with one call to the
TtsDisableUsrDictsEx() function. The dictionary engine instances
are unloaded one by one using the TtsUnloadUsrDictEx() function.
The user rulesets are unloaded one by one using the TtsSetParams()
function.
Then the fetch property map is destroyed using TtsMapDestroy()
function.
Finally the TTS engine instance is destroyed with TtsUninitialize(),
followed by a TtsRemoveEngine() call if a TTS server was used.

The output is received via the call-back function CbTtsDestination.
Events or markers are received via the CbTtsEventNotify function
which ignores all events. All call-backs are specified when
TtsInitialize() is called.

RealSpeak Parameters

Introduction

In a client/server environment, the default values for numerous
parameters can be set in one or more RealSpeak Server configuration
files.
When a TTS engine instance is created using the TtsInitialize(Ex) API
function, the majority of these parameters and some extra parameters
can be set to new values, overriding the default values of the
configuration files.



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/61

After creation, most “speak” parameters can be updated using the 
TtsSetParam(s) API functions.
Some parameters can be set for a particular Speak request when
calling the TtsProcessEx() function.
Most speak parameters can also be changed by marking up the input
text. If so, those values override both the RealSpeak Server defaults
and the value set via the API. But they are only active for that (and
only that) speak request.

Use of Configuration Files

The TTS Server is configured using an XML configuration file, by
default “config/ttsserver.xml” within the RealSpeak Telecom
installation directory.
Note that when operating RealSpeak in in-process mode, the server
configuration file is not used at all (except when using the SAPI5
interface). The use of server configuration files is explained in more
detail in the “Running the TTS Server” subsection of the 
“Client/Server Use of RealSpeak” section further in this chapter.

Setting of Parameters via the API

Non-speak parameters

The parameters that are not directly related to the text-to-speech
conversion process, are usually shared over all engine instances. They
can be set via the TtsInitialize(Ex) API function. Note this function
initializes a certain instance, but only the first call to TtsInitialize(Ex)
can set the concerning parameters. Examples of this class of
parameters are the “RealSpeak Installation directory” and the “cache 
directory” for internet fetches. 

Speak Parameters

Parameters tuning the Text-to-speech conversion that are set via the
API apply to a certain instance. A number of parameters can already
be specified when the engine instance is initialized via the
TtsInitialize(Ex) API function, by setting the appropriate fields in a
“TTSPARAM” structure. This structure specifies for instance the
initial language and voice and , the volume. As mentioned above this
structure also specifies parameters that are shared over all instances.
The structure type will be discussed in greater detail in the
“TTSPARM” topic in the “RealSpeak API” chapter.

Examples:
TtsParm.nLanguage = TTS_VOICE_USE_STRING;
TtsParm.szLanguageString = “French”; 
TtsParm.nVoice = TTS_VOICE_USE_STRING;
TtsParm.szVoiceString = “Sophie”; 



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/62

Most speak parameters can be set using the TtsSetParam(s) functions.
In most cases parameters cannot be updated when the instance is
busy executing the TtsProcess(Ex) function (which performs the text-
to-speech conversion process) in another thread. Only the volume
and the rate can be updated while speaking

Text Markup

Finally, a lot of the parameters can also be updated by inserting
markup in the input text. The RealSpeak API supports two markup
languages: the native one (the default) and 4SML (SSML with some
proprietary extensions). The same markup languages are supported
when the Speechify API is used.
SAPI5 is supported when the SAPI interface is used. Please refer to
the “SAPI5 Compliance” and “SSML Support” chapter for details 
regarding the SAPI5 or SSML markup languages. The native markup
language is described in each of the language specific user guides.

Overview of RealSpeak parameters

The table below gives an overview of all the RealSpeak parameters
and how they can be set. Setting parameters via environment
variables or the registry is however not described; please refer to the
“Installation Guide” and the “SAPI5 compliance” chapter for this.

As an example of how to interprete the table, here is a description of
the setting of the “voice” speak parameter.
RealSpeak allows the selection of the voice in three different ways; it
however does not support the setting of a “default voice” via the 
configuration files or as a parameter of the TtsProcess(Ex) function.
The voice can be set:

 Via the TtsInitialize(Ex) API function, by setting the
appropriate values in the TTSPARAM structure. For the
details see the description of the TTSPARAM structure type
in the “RealSpeak API” chapter; the involved structure fields
are ‘nVoice’ and ‘szVoiceString’ 
Example:

Parm.nVoice = TTS_VOICE_USE_STRING;
Parm.szVoiceString = “Jill”; 

 Using the TtsSetParam(s) function, providing the instance is
not busy executing the TtsProcess(Ex) function in another
thread.

 Using markup: the SSML <voice> element and voice
attribute, the SAPI5 voice element or the native
<esc>\voice\ tag.

Most parameters that can be changed via the TtsSetParam (s)
functions can only be updated while the TTS instance is in an idle



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/63

state, meaning that there is no TtsProcess(Ex) function being
executed for that instance in another thread. The only two
exceptions are the rate and volume parameters

Parameter Configurati
on Files

Initialize
function

SetParam(s)
function

ProcessEx
function
(SpeakData
parameter)

Text
Markup

Environment Settings
Installation
directory

Y
(<SSFTTT
SSDK>)

Y (shared
over all
instances;
TtsParm.s
zLibLocat
ion)

N N N

Temp. files
directory

Y
(<TMPDI
R>)

N N N N

User ID Y
(<USER>)

N N N N

Network parameters
See“User
Configuration” 
chapter for the
full list. E.g.
TCP/IP port
number

Y (for all) N (for all) N (for all) N (for all) N (for all)

TTS servers The SAPI5
client
configurati
on file must
list the
available
TTS servers
under
<tts_server
s>

Y (the
client
specifies
the
hostname
of the
server, the
port
number
or the
service
name in
the
TTS_SER
VER
structure.)

N N N



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/64

Parameter Configurati
on Files

Initialize
function

SetParam(s)
function

ProcessEx
function
(SpeakData
parameter)

Text
Markup

Licensing Parameters
Licensing mode,
default or explicit

Y
(<license_
mode>)

N Y; idle state
(TTS_LIC
ENSE_MO
DE_PARA
M)

N N

License servers Y
(<license_s
ervers>

N N (use the
SSFT_TTS
_LICENSE
_SERVER
S
environmen
t variable
when using
RealSpeak
in-process)

N N

Miscellaneous Server Parameters
See“User 
Configuration” 
chapter for the
full list. E.g.
default mode for
running the server
(background
versus interactive)

Y (for all) N (for all) N (for all) N (for all) N (for all)

Diagnostic and Error Logging Parameters
“User 
Configuration” 
chapter for the
full list. E.g. log
level, maximum
size of log file

Y (for all) N (for all) N (for all) N (for all) N (for all)



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/65

Parameter Configurati
on Files

Initialize
function

SetParam(s)
function

ProcessEx
function
(SpeakData
parameter)

Text
Markup

Internet Fetch parameters
Global cache
parameters (E.g.
cache directory,
cache max. total
size
cache). See
TTSPARAM and
“User
Configuration” 
chapter for more
details

Y
(E.g.
<cache_dir
ectory>,
<cache_tot
al_size>)

Y (E.g.
szCacheP
ath,
CacheTot
alSizeMb
members
of
TtsParm);
shared
over all
instances

N N

Proxy parameters
(proxy server and
port number)

Y
(<inet_pro
xy_server>
and
<inet_prox
y_server_p
ort>)

Y
(szProxyS
erver and
nProxyPo
rtNumber
member
of
TtsParm;
shared
over all
instances)

N N N

Inet extension
rules

Y
(<inet_exte
nsion_rules
>)

N N N N

User agent name
in HTTP headers

Y
(<inet_user
_agent>)

N N N N

Whether to accept
HTTP cookies

Y
(<inet_acce
pt_cookies
>)

N N User specific
cookie jar
can be
provided via
fetchCookieJ
ar parameter;
when NULL
cookies are
refused

N

URL base N N N Y
(“inet.urlBase
” in 
fetchProperti
es)

Y for
4SML



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/66

Parameter Configurati
on Files

Initialize
function

SetParam(s)
function

ProcessEx
function
(SpeakData
parameter)

Text
Markup

Web server fetch
timeout

N N N Y
(fetchPropert
ies)

Y for
4SML
(fetchtime
out for
<audio>)

Use of cache
entry for a
specific internet
fetch

N N N Y(
fetchProperti
es
“inet.maxage
” and 
“inet.maxstal
e”)

Y for
4SML
(maxage
and
maxstale
for
<audio>)

Input text parameters
Markup type
(native or 4SML
for RealSpeak
API, SAPI5 is
only possible if
SAPI interface is
used)

N N Y; idle state
(TTS_MAR
KUP_TYP
E_PARAM
)

Y
(contentTyp)

N

Character
encoding

N N N Y
(contentTyp)

Y for
4SML
and
SAPI5
(<?xml>
header)

Type of
document (e.g.
“text” or “email”)

N N Y; idle state
(TTS_DO
CUMENT
_TYPE_P
ARAM)

N Y for
4SML
(ssft-
dtype
attribute)
and native
markup
(<esc>%)

Audio Parameters
Sample frequency N Y

(TtsParm.
nFrequen
cy)

N N N

Sample format
(e.g. mu-law)

N Y
(TtsParm.
nOutputT
ype)

Y; idle state
(TTS_OUT
PUT_TYP
E_PARAM
)

N N



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/67

Parameter Configurati
on Files

Initialize
function

SetParam(s)
function

ProcessEx
function
(SpeakData
parameter)

Text
Markup

Event parameters
call-back
functions

N Y
(TtsParm.
cbFuncs)

N N N

Marker mode N N Y; idle state
(TTS_MAR
KUP_TYP
E_PARAM
)

N N

Speak Parameters
Language
(language and
country or dialect)

N Y
(TtsParm.
szLanguag
eString or
TtsParm.n
Language)

Y; idle state
(TTS_LAN
GUAGE_P
ARAM)

N Y for
4SML
(xml:lang
attribute)
and
SAPI5
(<Lang>)

Voice (name,
gender, number,
etc)

N Y
(TtsParm.
szVoiceSt
ring or
TtsParm.n
Voice)

Y; idle state
(TTS_VOI
CE_PARA
M)

N Y (all)

Rate Y
(<default_r
ate>)

N Y; idle and
busy state
(TTS_RAT
E_LARGE
SCALE_P
ARAM or
TTS_RAT
E_PARAM
)

N Y (all)

Volume Y
(<default_v
olume>)

N Y; idle and
busy state
(TTS_VOL
UME_LAR
GESCALE
_PARAM
or
TTS_VOL
UME_PAR
AM)

N Y (all)



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/68

Parameter Configurati
on Files

Initialize
function

SetParam(s)
function

ProcessEx
function
(SpeakData
parameter)

Text
Markup

Pitch (not
supported by the
engine)

N N Y
(TTS_PITC
H_PARAM
) but not
supported
by engine

N Y but not
supported
by engine

Read mode
(e.g.sentence-by-
sentence, word-
by-word)

N N N N Y for
native
markup

Spell mode
on/off

N N N N Y (all)

End-of-message
pause length

N N N N Y for
native
markup

Use of RealSpeak in telephone or dialogue applications

Multiple engine instances

Telephony applications are designed to service many customers at the
same time. The concept of “voice port” is often used in this domain.
Each voice port can service one customer at a time.
Typically, a telephony application will direct all TTS requests for one
telephone call or dialogue session to the same TTS engine instance.
The term “call” will be used to refer to a telephone call by a customer
or any form of dialogue session.
The instance can in principle be created and initialized at the start of
the call and destroyed when the call is terminated. But it is usually
more efficient to keep the engine instance alive and reuse it for
another call; this means one TTS engine instance is assigned to one
voice port for a lifetime that is usually much longer than one call.

Note that reusing an engine instance for a new call usually requires
the application to restore the engine instance to a well-known state
before reusing it for another call. This is needed when the settings of
an instance are changed in the course of one call (e.g. adjust the
volume, switching the voice or language, loading of user dictionaries).
These changes are undone in a similar way as they were performed:
using the TtsSetParams() function and the API functions for the
enabling/disabling of user dictionaries.



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/69

Since the TtsProcess() function is a synchronous or blocking
function, the concurrent handling of multiple voice ports, requires the
use of process threads. Usually one thread is created for each voice
port. The audio is streamed back to the telephone application via the
Destination call-back. The first argument of which, the application
data pointer, can be used to direct the audio to the appropriate voice
port.

Real-time responsiveness and audio streaming

To support real-time audio streaming, the engine should return audio
chunks at a rate that is faster or equal to the play-back rate.
When servicing multiple voice ports each TTS instance should be run
in a separate thread to enable real-time audio streaming for all ports.
On the server, threads are automatically created for each server
engine instance. By using threads, the switching between the
instances is handled by the operating system.

The RealSpeak engine attempts to minimize the latency for each TTS
request by sending audio back as soon as the buffer provided by the
application can be filled completely.
The engine instance achieves this by narrowing the window moving
over the data as much as possible without degrading the speech
quality. One of the first processing steps is to split off a next
sentence. Then the linguistic processing is performed on that
sentence. The unit selection normally operates on one sentence, but
for long sentences, it limits its window to one phrase. The final
subprocess, the synthesizer, processes one speech unit at a time and
narrows its scope to a small chunk of speech samples when nearing
the output step.
As soon as that chunk of speech is sent to the application via the
Destination call-back, it can be played back. The Destination call-
back should return as soon as possible, to allow the instance to
process the rest of the speech unit, sentence or text and fill a next
buffer with audio before the audio of the previous buffer has played
out. Note that the size of the output chunk is determined by the
application, for reasons of efficiency it should not be too small, but to
minimize the latency it shouldn’t be too big.  A good compromise is 
4Kbytes.
The above explains that the latency for the first audio chunk of a
sentence is usually longer than for the following chunks, which is
convenient since the effect of an underrun at the start of a sentence is
less critical: it results in a longer pause in-between two sentences.
The latency also depends on the type of input text. The application
designer should provision RealSpeak with an adequate safety margin
for the possible variance in the latency. For instance, if most TTS
requests consist of a text with normal sentences but a few may have
extremely long sentences (e.g. poorly punctuated e-mails) then
allowance should be made for situations where the TTS engine



Deploying RealSpeak

Chapter III

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter III/70

instance will have to deal with long sections of text with no
punctuation. Such an occurrence may result in an extended inter-
sentence latency, normally audible as a longer pause in-between two
sentences. To reduce the risk for extended inter-sentence latencies,
the engine will split up very long sentences at an appropriate location
(e.g. a phrase boundary). But is exceptional to have a natural sentence
that long (the length depends on the language and the sentence’s 
content and but it’s usually around 750 characters).
Note that when servicing multiple voice ports and assuming each
TTS instance is run in a separate thread, instances are not influenced
by the badly punctuated input of another instance.
If an audio chunk is not returned before the previous chunk has been
played out, a gap in the speech output will be heard. Such an intra-
sentence gap can have a stronger audible effect: it can occur for
instance within a word.  But such an “underrun” isless likely, and will
only start to appear when operating RealSpeak near its limits. The
effects can be masked by maintaining a queue of audio chunks which
allows accumulating audio faster than real-time to compensate for the
rare occasion of a non-realtime response. Usually the audio output
device will support the queuing or buffering of audio chunks before
they are effectively played out. In any case, when the Destination
call-back returns with an audio chunk, it’s safer to return a buffer for 
the next chunk ASAP instead of waiting till the play-back of the
previous chunk has finished. Of course, when the instance runs
faster than real-time, the insertion of some waiting can be appropriate
when the size of the queue grows too much (a fixed maximum on the
number of buffers would then result in an overrun). Note that
because of the‘throttling’mechanism implemented by RealSpeak, the
audio chunk delivery rate is limited to two times real-time, thus
reducing the risk for overruns.



RealSpeak Telecom
Software Development Kit

Chapter IV
RealSpeak API

Programmer’s Guide



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/72

RealSpeak API
New and Changed in RealSpeak 4.0 API

As a result of the improved functionality, the interface of the TTS
system has been changed. To ensure backwards compatibility, new
functions and data types are added to the interface to provide the new
functionality; both behavior and interface remain the same for the
existing functions and data types. Some new functions are an
extension of existing functions and it is recommended to use those
instead of the existing ones. Above that, the new functionality
includes a run-time based licensing system. This paragraph contains
an overview of all changes.

The following functions are new for this release:

TtsDisableUsrDictsEx
TtsMapCreate
TtsMapDestroy
TtsMapSetChar
TtsMapSetU32
TtsMapSetBool
TtsMapGetChar
TtsMapFreeChar
TtsMapGetU32
TtsMapGetBool
TtsSetParams
TtsGetParams
TtsResourceAllocate
TtsResourceFree

The following functions are an extension of existing functions. They
end with an ‘Ex’ to make a clear separation between the old andnew
functions. The corresponding old functions can be found between
brackets:

TtsInitializeEx (TtsInitialize)
TtsProcessEx (TtsProcess)
TtsLoadUsrDictEx (TtsLoadUsrDict)
TtsUnloadUsrDictEx (TtsUnloadUsrDict)
TtsEnableUsrDictEx (TtsEnableUsrDict)
TtsDisableUsrDictEx (TtsDisableUsrDict)

The following data types are new for this release:

HTTSDCTEG
HTTSMAP
HTTSVECTOR
TTS_PARAM_T
TTS_Marker
TTS_Event
TTS_BookMark
TTS_SentenceMark



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/73

TTS_WordMark
TTS_PhonemeMark
TTS_ParagraphMark
SpeakData
DictionaryData

HTTSDICT and HTTSDCTEG are equivalent; they are both
handles to a dictionary instance. By design, HTTSDCTEG must be
used in combination with the new functions while HTTSDICT must
be used in combination with the already existing functions.

The SpeakData structure is used in combination with the new
TtsProcessEx function.
It is used to describe the actual TTS input data: its location, fetch
properties and type (used markup language and character set). This
new approach enables references to URI addresses and supports the
specification of the document type:“standard” (use of native markup)
versus 4SML (or SSML). Fetch properties can be especially handy in
case of remote access to the input data (e.g. for specifying a fetch
timeout). The input text can also be provided via a memory buffer.
When SpeakData is used, it replaces the TtsSourceCb callback
function; the source callback can still be used with the new function,
though
The DictionaryData structure is used in a similar way as the
SpeakData structure; it describes a dictionary: its location, fetch
properties, type and priority.

The TTSPARM data type has been extended and contains now more
members. Basically there are two kinds of new members: parameters
that describe the new proxy server functionality and parameters that
describe the new cache functionality. The existing functions will only
use the old members.

The TTS_PARAM_T data type has to be used together with
TtsGet/SetParams and makes it possible to respectively query or
modify multiple parameters from an engine instance with one
function call.

The TTS_Marker, TTS_Event, TTS_BookMark, TTS_SentenceMark,
TTS_WordMark, TTS_PhonemeMark and TTS_ParagraphMark are
used to support markers or events. Markers can be received via the
TtsEventCb callback function and provide the application with extra
info about the message that is being processed. The callback was
already defined in the previous version, but it was never called.

Run-time licensing has been enforced to the product. The new API
function TtsResourceAllocate allows control on the use of licenses.
By default implicit licensing mode is used which requires no extra
function calls.

The licensing is based on the number of active TTS engine instances.
There are two licensing modes, an explicit and an implicit one (the
default). More info about licensing can be found in the“Installation 
Guide” chapter.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/74

Note:don’t use the old functions and 
the new functions in conjunction!

Defined Data Types
This section describes the defined data types that are required to
interact with the API.

HTTSDICT

HTTSDICT is the type representing the handle to a dictionary
instance. It is returned from a successful call to the TtsLoadUsrDict
function. This type is in the header file lh_ttsso.h.

This type is used in combination with the obsolete
TtsLoadUsrDict/TtsUnloadUsrDict functions and should not be
used in new implementations anymore; see HTTSDCTEG.

HTTSDCTEG

HTTSDCTEG is the type representing the handle to a dictionary
instance. It is returned from a successful call to the
TtsLoadUsrDictEx function. This type is in the header file lh_ttsso.h.

HTTSDICT and HTTSDCTEG are the same. By design,
HTTSDCTEG must be used in combination with the new functions.

HTTSINSTANCE

HTTSINSTANCE is the type representing the handle to an open
TTS engine instance. It is returned from a successful call to the
TtsInitialize or TtsInitializeEx function. This type is in the header file
lh_ttsso.h.

HTTSMAP

HTTSMAP is the type representing the handle to an open TTS map.
A TTS map contains the fetch properties for speech data or a
dictionary instance. It is returned from a successful call to the
TtsMapCreate function. This type is in the header file lh_ttsso.h.

HTTSVECTOR

HTTSVECTOR is the type representing the handle to an open
Vector. It is a member of the SpeakData and DictionaryData
structures and is updated when the API is called.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/75

TTSRETVAL

TTSRETVAL is the type representing a TTS error. This type is in the
header lh_ttsso.h.

LH_SERVER_INFO

This structure is used to set the server network information. This
structure is in the header lh_ttsso.h.

typedef struct
{
LH_CHAR IP_Address[80];
LH_CHAR service[80];
LH_S32 port_number;
} LH_SERVER_INFO;

Structure members

IP_Address
Service
port_number

IP address of the server
Service name
Port number

LH_SDK_SERVER

This structure holds the LH_SERVER_INFO structure with the
server’s network information in it and the handle to the server.  This 
structure is in the header lh_ttsso.h.

typedef struct
{
LH_SERVER_INFO server;
LH_S32 server_handle;
}LH_SDK_SERVER;

Structure members

server Server information structure
server_handle Handle to server



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/76

TTSCallBacks

TTSCallBacks is used to pass the addresses of callback functions in
TtsInitialize() or TtsInitializeEx(). The function definitions for the
callbacks are described in the User Callbacks section.

typedef struct
{
int numCallbacks;
TTSSOURCECB TtsSourceCb;
TTSDESTCB TtsDestCb;
TTSEVENTCB TtsEventCb;
} TTSCallBacks;

Structure members

numCallbacks Number of callbacks; is not
used.

TtsSourceCb Callback for source text
TtsDestCb Callback for output audio
TtsEventCb Callback for events

TTSPARM

A TTSPARM typed structure is used to specify the (initial)
parameters for a given engine instance when calling TtsInitialize or
TtsInitializeEx.. This data structure is defined in the header file
“lh_ttsso.h”. See Appendix A for a summary of the acceptable values
for each member.

typedef struct
{
U16 nLanguage;
CHAR* szLanguageString
U16 nOutputType;
U16 nFrequency;
U16 nVoice;
CHAR* szVoiceString
CHAR* szLibLocation
U16 nOutputDataType;
U16 nInputDataType;
TTSCallBacks cbFuncs;
CHAR* szProxyServer;
U32 nProxyPortNumber;
CHAR* szCachePath;
U32 nCacheTotalSizeMb;
U32 nCacheEntryMaxSizeMb;
U32 nCacheEntryExpTimeSec;
U32 nCacheLowWaterMB;
int bCache;
} TTSPARM;



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/77

Structure members

nLanguage Language to use, a value of
TTS_LANG_USE_STRING
instructs the API to use
szLanguageString instead of
nLanguage

szLanguageString String specifying language to
use (valid when nLanguage =
TTS_LANG_USE_STRING).
e.g. “American English”

nOutputType Output type to use. Possible
values: TTS_LINEAR_16BIT
(16-bit linear),
TTS_MULAW_8BIT (mu-law)
or TTS_ALAW_8BIT (A-law)

nFrequency Frequency to use. Possible
values: TTS_FREQ_8KHZ
(8kHz), TTS_FREQ_11KHZ
(11kHz) or
TTS_FREQ_22KHZ (22kHz)

nVoice Integer specifying the voice to
use, setting the value equal to
TTS_VOICE_USE_STRING
instructs the API to use the
szVoiceString member instead of
nVoice

szVoiceString String specifying voice to use
(only valid when nVoice =
TTS_VOICE_USE_STRING).
e.g. “Jennifer”

szLibLocation Location of the engine libraries
and databases; it should specify
the path to the speech
subdirectory of the RealSpeak
installation directory (the latter
one is specified by
$SSFTTTSSDK or
%SSFTTTSSDK%) Specifying
the installation directory itself
also works. Only in
client/server mode, this
member can be set to NULL,
and then the client will use the
SSFTTTSSDK environment
variable. The specified value is
never used by the server engine
instance. The server uses the
SSFTTTSSDK parameter
specified in the server
configuration file.

nOutputDataType Not in use.
nInputDataType Not in use.
cbFuncs Pointers to application callback



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/78

functions, see TTSCallBacks
data type topic for more details



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/79

The following structure members are new for this release:

szProxyServer String specifying proxy server to
use. This value can be NULL
when no proxy server is
available.

nProxyPortNumber The port number of the proxy
server to use. Has only to be
specified when szProxyServer is
not equal to NULL.

szCachePath String specifying the path of the
cache. Subdirectory \cache is
created automatically and should
not be included in the cache
path. Only required when
bCache = true.

nCacheTotalSizeMb The total size of the cache in
Mb. Only required when bCache
= true.

nCacheEntryMaxSizeMb The maximum size a cache entry
can have. Only required when
bCache = true.

nCacheEntryExpTimeSec Maximum amount of time any
individual cache entry will
remain in the cache, in seconds.
Only required when bCache =
true.

nCacheLowWaterMB The minimum size the cache can
have; everything above this
threshold will be cleaned up
after each action. This value can
be 0.

bCache Enable or disable the cache.
When enabling the cache, the
following structure members
must have a value different from
0: nCacheTotalSizeMb,
nCacheEntryMaxSizeMb,
nCacheEntryExpTimeSec,
nCacheLowWaterMB,
szCachePath.

TTS_PARAM

TTS_PARAM is used to indicate the parameter type when calling
TtsSetParam(s) and TtsGetParam(s). The members
TTS_LANGUAGE_PARAM and TTS_VOICE_PARAM are
introduced in version 4.0.

typedef enum
{
TTS_LANGUAGE_PARAM,
TTS_VOICE_PARAM,
TTS_VOLUME_PARAM,



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/80

TTS_RATE_PARAM,
TTS_PITCH_PARAM, /* NOT SUPPORTED

IN REALSPEAK */
TTS_DOCUMENT_TYPE_PARAM,
TTS_VOLUME_LARGESCALE_PA
RAM,
TTS_RATE_LARGESCALE_PARA
M,
TTS_MARKUP_TYPE_PARAM,
TTS_OUTPUT_TYPE_PARAM,
TTS_MARKER_MODE_PARAM,
TTS_BLADE_ENABLE_PARAM,
TTS_BLADE_DISABLE,
TTS_LICENSE_MODE_PARAM,
TTS_RULESET_LOAD_PARAM
TTS_RULESET_UNLOAD_PARAM
TTS_TOTAL_PARAMS
} TTS_PARAM;

TTS_PARAM_VALUE_T

TTS_PARAM_VALUE_T union type is used as a storage place for
the value of a parameter that is specified via a TTS_PARAM typed
structure.

typedef union TTS_PARAM_VAL_U {
{
U32 nNo;
TTS_PARAM_VAL_ARRAY_T array;
VOID * pObj;
HTTSMAP hMap
} TTS_PARAM_VALUE_T;

With

typedef struct TTS_PARAM_S {
{
U16 nValue;
void* pValue
}
TTS_PARAM_VAL_ARRAY_T;

TTS_PARAM_T

TTS_PARAM_T describes one parameter name, parameter value
couple. This data structure is defined in the header file lh_ttsso.h. See
the description of the TTS_PARAM type for a list of possible values
for the nParam field.

typedef struct TTS_PARAM_S {
{
TTS_PARAM nParam;



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/81

TTS_PARAM_VALUE_T paramValue;
} TTS_PARAM_T;

TTS_FETCHINFO_T

TTS_FETCHINFO_T is used to provide all the information to load
(fetch) or unload a ruleset.

typedef struct
{
const char* szUri;
const char* szContentType;
HTTSMAP hFetchProperties;
} TTS_FETCHINFO_T;



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/82

Structure members

szUri String (zero-terminated) specifying the location of
the ruleset document. This can be an http address
(http://) or a file name (regular or with file://).

String specifying the content-type of the ruleset.
It's optional: specify NULL if not used.
By default the content-type is assumed to be
"application/x-realspeak-rettt+text" (see definition
of RULESET_MIME_RETTT_TEXT in
"lh_inettypes.h".
szContentType can have the following constants as
value:
Value File type
RULESET_MIME_RETTT_TEXT Textual

RETTT
ruleset

szContentType

Note that the character set does not need to be
specified.
Warning: rulesets must be encoded in the native
character set for the TTS language specified in the
header section of the ruleset.
See the table inthe “RealSpeak Languages” 
appendix for an overview of the native character
set for each language.

hFetchProperties Used to set the properties of the fetch (note that
some properties like for instance URL_BASE are
also used for file fetching). The properties are
stored in a map; the functions TtsMapCreate,
TtsMapDestroy, TtsMapSetChar, TtsGetChar etc.
are used to maintain the map. The list of available
properties can be found in the header file
“lh_inettypes.h”(for example
SPIINET_URL_BASE to support relative URI's
and filenames and
SPIINET_TIMEOUT_DOWNLOAD to set the
fetch timeout.)
It's optional: specify NULL if not used.

SpeakData (PSpeakData)

SpeakData is used when calling TtsProcessEx. It is used to describe
the location of the input data for a text to speech action and its
properties. Note that it is still possible to use the source call-back
method; in this case the uri and data structure members should be set
to NULL.
PSpeakData is a pointer to a SpeakData structure.

typedef struct



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/83

{
char* uri;
VOID* data;
U32 lengthBytes;
char* contentType;
HTTSMAP fetchProperties;
HTTSVECTOR fetchCookieJar;
} SpeakData, *PSpeakData;



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/84

Structure members

String specifying the location of the input
data. This can be an http address
(http://)or a file name (regular or with
file://). Since file context can be interpreted
based on the file extensions, file extensions
are required. The following file extensions
are interpreted and the file content is read
as defined in the following table (set
contentType to NULL unless you want to
overwrite this behavior):

Extension Content read as
.txt Text file
.xml 4sml file
.ssml 4sml file

uri

Set the uri member to NULL to indicate
that the input data is provided via the data
member or the source call-back.

data Pointer to buffer containing the input text.
This structure member will be used only
when uri is NULL. Set both uri and data to
NULL to use the source callback function.

lengthBytes The length of the data buffer in bytes.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/85

String that describes the type of content of
data. This string must be specified when a
file with unsupported file extension is
included in the uri string or when using the
data member: for more info see the
description of the uri member.

contentType can have the following values.
Remark: the string values are case-sensitive;
capitals are not supported.

Value Content
“default” Text file
“text/plain” Text file.
“text/plain;charset=
<charset>”

Text file. It’s 
optional to add a
specification of the
character set.
Example:
“text/plain;charset=
windows-1252”

See the table below
for an overview of
some of the
supported character
sets.

“application/synthe
sis+ssml”

4sml file.

“application/ssml+
xml”

4sml file.

contentType

“text/xml” 4sml file.
fetchProperties Used to set the properties of the fetch. The

properties are stored in a map; the
functions TtsMapCreate, TtsMapDestroy,
TtsMapSetChar, TtsMapGetChar etc. are
available to manipulate a map. The list of
available properties can be found in the
header file lh_inettypes.h

fetchCookieJar For internal use.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/86

The supported abstract character set varies by language. But note that
an abstract character set is distinct from a coded character set. In fact
RealSpeak supports all coded character sets supported by the ICU
transcoding component for all languages as long as the input text only
contains characters that can be transcoded to the native coded
character set of the language of the input. See the “RealSpeak 
languages” appendix for a list of the native character set for each
language.
Some examples are listed below.

Coded Character set Languages Notes

UTF-8 All languages
UTF-16 All languages If the byte order

mark is missing,
big-endian is
assumed.

ISO-8859-1 Western languages
windows-1252 Western languages
EUC-jp (synonym:
EUC)

Japanese

Shift-JIS Japanese

The ICU component which is used to perform the transcoding from
the input character set to the native character set is a third-party
component.  For more information see also the “Copyright and
Licensing for third party software” appendix.

For more information about the character sets for the contentType
parameter, take a look at the following websites:

 The ICU website:
http://www-306.ibm.com/software/globalization/icu

 www.iana.org/assignments/character-sets

Note that in fact RealSpeak supports all character sets supported by
the ICU component for all languages as long as the input text only
contains characters that can be transcoded to the native character set
of the language of the input. For example an input text

Remark:

The application cannot specify the contenttype/charset argument
when using the TTSSOURCECB source callback mechanism: the
character set is then chosen by the TTS system based on the active
language; see the “RealSpeak languages” appendix for the native 
character set for each language. In that case, the application has to
make sure that the input text character set matches this character set.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/87

DictionaryData, (PDictionaryData)

DictionaryData is used when calling TtsLoadUsrDictEx,
TtsUnloadUsrDictEx or TtsEnableUsrDictEx(). It is used to describe
the properties of a dictionary instance. PDictionaryData is a pointer
to a DictionaryData structure.

typedef struct
{
U32 version;
char* uri;
VOID* data;
U32 lengthBytes;
char* contentType;
HTTSMAP fetchProperties;
HTTSVECTOR fetchCookieJar;
} DictionaryData, *PDictionaryData;



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/88

Structure members

version Dictionary version.
String specifying the location of a dictionary
this can be an http address (http://)or a file
name (regular or with file://). Since file
context can be interpreted based on the file
extensions, file extensions are required. The
following file extensions are interpreted and
the file content is read as defined in the
following table (set contentType to NULL
unless you want to overwrite this behavior):

Value Content read as
.dct Text file.
.tdc Text file.
.bct Binary file.
.tbc Binary file.

uri

Set the uri member to NULL to indicate that
the input data is read from the data member.

data Pointer to data stream. This structure
member will be used when uri is NULL.

lengthBytes The length of the data stream in bytes.
String that describes the type of content of
data. This string must be specified when a
file with unsupported file extension is
specified by the uri structure member or
when working with the data component.

contentType can have the following
constants as value:

Value File type
DCT_MIME_EDCT_TEXT Text

contentType

DCT_MIME_EDCT Binary
fetchProperties Used to set the properties of the fetch if an

URL is specified. The properties are stored in
a map; the functions TtsMapCreate,
TtsMapDestroy, TtsMapSetChar,
TtsGetChar etc. are used to maintain the
map. The list of available properties can be
found in the header file lh_inettypes.h

fetchCookieJar For internal use.

G2P_DICTNAME

G2P_DICTNAME is used to represent a G2P dictionary.

typedef char
G2P_DICTNAME[MAX_G2P_DICTNAME_LENGTH]



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/89

TTS_Marker

TTS_Marker provides bit masks for all marker types. By bitwise
or’ing thetypes of interest, an integer is created that can be used to
specify the TTS_MARKER_MODE_PARAM parameter via the
TtsSetParam(s) functions. Only the corresponding event types will be
issued by the event callback function. However, SENTENCEMARK
events are always generated.

typedef enum TTS_Marker
{
TTS_MRK_SENTENCE = 0x0001,
TTS_MRK_WORD = 0x0002,
TTS_MRK_PHONEME = 0x0004,
TTS_MRK_BOOK = 0x0008,
TTS_MRK_PARAGRAPH = 0x0200
} TTS_Marker;

TTS_Event

TTS_Event defines all event types that can be caught by the
TTSEVENTCB callback function.

typedef enum TTS_Event
{
TTS_EVENT_SENTENCEMARK,
TTS_EVENT_BOOKMARK,
TTS_EVENT_WORDMARK,
TTS_EVENT_PHONEMEMARK,
TTS_EVENT_PARAGRAPHMARK,
} TTS_Event;

Events normally mark the beginning of a particular kind of data
(sentence, word…)in the audio output. But an event will also be
issued when the audio output reaches the position of a book mark
inserted in the input text.

TTS_EVENT_BOOKMARK Marks the position of a user
book mark; book marks can
be inserted in the input text
via the SSML <mark>
element or the RealSpeak
<esc>\mrk=x\ tag.
The type TTS_BookMark is
be used to store the marker’s 
properties.

TTS_EVENT_SENTENCEMARK Marks the beginning of a
sentence.
The type TTS_SentenceMark
is be used to store the
marker’s properties.

TTS_EVENT_WORDMARK Marks the beginning of a
word.
The type TTS_WordMark is



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/90

used to store the marker’s 
properties.

TTS_EVENT_PARAGRAPHMARK Marks the beginning of a
paragraph.
The type TTS_ParagraphMark
is be used to store the
marker’s properties.Note that
paragraph markers are only
issued when paragraphs have
been marked in the input text
via the paragraph tag (native
<ESC>\p\ tag or SSML <p>
element).

TTS_EVENT_PHONEMEMARK Marks the beginning of a
phoneme.
The type TTS_PhonemeMark
is be used to store the
marker’s properties.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/91

TTS_MarkPos

TTS_MarkPos describes the common properties of a marker. This
structure is part of a marker structure that describes a particular kind
ofmarker (TTS_BookMark, TTS_PhonemeMark…).  

typedef struct TTS_MarkPos {
{
U32 nInputPos;
U32 nInputLen;
U32 nOutputPos;
U32 nOutputLen;
} TTS_MarkPos;

Structure members

nInputPos Start position of input (sentence,
word…) in bytes. Start position is
counted from beginning of
message.

nInputLen Length of input (sentence,
word...) in bytes.

nOutputPos Start position of output (sentence,
word..) in bytes. Start position is
counted from beginning of
message.

nOutputLen Length of output (sentence,
word...) in bytes.

Not every marker type supports the four attributes. Here’s an 
overview of which TTS_EVENT event type is supporting what kind
of data:

Event type
(excl. TTS_EVENT
prefix)

nInput
Pos

nInput
Len

nOutput
Pos

nOutput
Len

BOOKMARK Yes No Yes No
SENTENCEMARK Yes Yes Yes No
WORDMARK Yes Yes Yes No
PARAGRAPH MARK Yes No Yes No
PHONEMEMARK No No Yes Yes

TTS_BookMark

TTS_BookMark describes the parameters for a bookmark marker.
This structure is passed to TTSEVENTCB callback when the event is
TTS_EVENT_BOOKMARK.
It is important to note that RealSpeak Telecom 4.0 only supports
numerical bookmarks.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/92

typedef struct TTS_BookMark {
const char * szID;
TTS_MarkPos mrkPos;

} TTS_BookMark;



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/93

TTS_PhonemeMark

TTS_PhonemeMark describes the parameters for a phoneme marker.
This structure is passed to TTSEVENTCB callback when the event is
TTS_EVENT_PHONEMEMARK.

typedef struct TTS_PhonemeMark {
const char * szID;
TTS_MarkPos mrkPos;

} TTS_PhonemeMark;

TTS_SentenceMark

TTS_SentenceMark describes the parameters for a sentence marker.
This structure is passed to TTSEVENTCB callback when the event is
TTS_EVENT_SENTENCEMARK.

typedef struct TTS_SentenceMark {
TTS_MarkPos mrkPos;

} TTS_BookMark;

TTS_ParagraphMark

TTS_ParagraphMark describes the parameters for a paragraph
marker. This structure is passed to TTSEVENTCB callback when the
event is TTS_EVENT_PARAGRAPHMARK.

typedef struct TTS_ParagraphMark {
TTS_MarkPos mrkPos;

} TTS_ParagraphMark;



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/94

TTS_WordMark

TTS_WordMark describes the parameters for a word marker. This
structure is passed to TTSEVENTCB callback when the event is
TTS_EVENT_WORDMARK.

typedef struct TTS_WordMark {
TTS_MarkPos mrkPos;

} TTS_WordMark;

Structure members

All marker structures have the following structure members in
common:

szID Currently not used (for
Bookmark and Phoneme
markers only)

mrkPos Struct that describes the data
values for one marker.
Consists of nInputLen,
nInputValue, nOutputLen and
nOutputValue.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/95

Function Descriptions

TtsInitializeEx

Syntax:

TTSRETVAL TtsInitializeEx(
HTTSINSTANCE* tts_handle,
LH_SDK_SERVER* server,
TTSPARM* lpTtsParms,
void* lpAppData)

Purpose: Initializes an instance of the TTS engine instance on the
server specified by the server parameter. The engine is created
according to the information specified in the lpTtsParms parameter.
When operating in local or in-process mode, pass NULL for the
server parameter.

To create an instance in Client/Server mode, you must call
TtsCreateEngine before calling TtsInitializeEx.

Parameters:

tts_handle [out] This pointer receives the
handle for the newly created
TTS engine instance. This
handle is passed to other TTS
functions to identify the instance

server Pointer to a server information
structure, which has been
initialized by a call to
CreateEngine(Set to NULL if
not in client/server mode)

lpTtsParms This is a pointer to a structure
whose members are used to
control certain aspects and
behaviors of the created engine.
Some members of this struct
must be filled in; check the
TTSPARM struct information
for more details.

lpAppData Application specific data that is
passed back to the application
each time one of the callbacks is
invoked.

Error codes: This function can return license related errors. See
TtsResourceAllocate() for more info.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/96

TtsInitialize

Syntax:

TTSRETVAL TtsInitialize(
HTTSINSTANCE* phTtsInst,
LH_SDK_SERVER* pServer,
TTSPARM* pTtsParms,
void* pAppData)

Purpose: Initializes an instance of the TTS engine instance on the
server specified by the pServer parameter. The engine is created
according to the information specified in the pTtsParms parameter.
When operating in local or in-process mode, pass NULL for the
pServer parameter.

To create an instance in Client/Server mode, you should call
TtsCreateEngine before calling TtsInitialize.

Parameters:

phTtsInst [out] This pointer receives the
handle for the newly created
TTS engine instance. This
handle is passed to other TTS
functions to identify the instance

pServer Pointer to a server information
structure, which has been
initialized by a call to
CreateEngine(Set to NULL if
not in client/server mode)

pTtsParms This is a pointer to a structure
whose members are used to
control certain aspects and
behaviors of the created engine.

pAppData Application specific data that is
passed back to the application
each time one of the callbacks is
invoked.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/97

TtsUninitialize

Syntax:
TTSRETVAL TtsUninitialize(HTTSINSTANCE hTtsInst)

Purpose: Frees all system resources associated with an engine
instance. Note that this function does not unload user dictionaries;
that must be done using TtsUnloadUsrDict.

Parameters:

hTtsInst Handle to a TTS engine instance

Error codes: This function can return license related errors. See
TtsResourceFree() for more info.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/98

TtsProcessEx

Syntax:

TTSRETVAL TtsProcessEx (
HTTSINSTANCE tts_handle,
const SpeakData * pSpeakData)

Purpose: Convert input text data into speech of the previously
specified output format. The input data properties can be described
via the pSpeakData argument. To use the source call-back, set the
structure members specifying the input (uri and data) to NULL.

Parameters:

hTtsInst Handle to a TTS engine instance
pSpeakData Pointer to SpeakData typed

structure, which describes where
the input data for text to speech
can be found and its properties.
Refer to the SpeakData structure
type description for more
details.

Error codes: This function can return licensing related errors. See
TtsResourceAllocate() for more info.

Remark: When using the TtsProcessEx function, the TTS input
method is determined as follows: first the uri SpeakData structure
member is checked: if it’s non-NULL the specified URI is used, else
the data member is checked: if it’s non-NULL, the specified buffer is
used. Only when both the uri and the data member are NULL, the
source callback function of type TTSSOURCECB is used.
Refer to the description of the SpeakData structure for more details
about the supported character sets for the input text data.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/99

TtsProcess

Syntax:

TTSRETVAL TtsProcess (HTTSINSTANCE hTtsInst)

Purpose: Convert input text data into speech of the previously
specified output format. The input data is received from the
application through the TTSSOURCECB callback. The speech data is
delivered using the TTSDESTCB destination callback. The function
returns either when all the speech data has been delivered or when
the data delivery has been stopped by a call to TtsStop. The format of
the output data can be specified when initializing the engine, and the
speech can be tuned via calls to TtsSetParam (e.g. set the volume, the
rate, the voice).
Parameters:

hTtsInst Handle to a TTS engine instance

The input text retrieved via the source callback must be encoded in
the native character set for the active language. Refer to the
“RealSpeak Languages” appendix for the native character set for each 
language.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/100

TtsStop

Syntax:

TTSRETVAL TtsStop(HTTSINSTANCE hTtsInst)

Purpose: Stops the Text-To-Speech conversion process initiated by a
call to TtsProcess() or TtsProcessEx(). Since the process functions
are synchronous (blocking), the TtsStop function must be called from
a different thread than the one that called the TtsProcess(Ex)
function. The TtsStop function always succeeds unless the engine
instance is not speaking.

Parameters:

hTtsInst Handle to a TTS engine instance



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/101

TtsSetParam

Syntax:

TTSRETVAL TtsSetParam(
HTTSINSTANCE hTtsInst,
U16 nParam,
U16 nValue

Purpose: Sets a TTS engine instance parameter to a specified value.
When the parameter change will take effect depends on the parameter
that is being set; when setting TTS_VOLUME_PARAM or
TTS_RATE_PARAM, the change will take effect almost immediately.
This function may be called while the TtsProcess(Ex) function is
processing, but some parameters cannot be changed while
TtsProcess(Ex) is active (e.g. language, voice, document type, markup
type, output type, marker mode).

If you want to set more than one parameter in one go, and one of the
parameters to be set is the document type, always set the document
type first before setting the other parameters. Otherwise, the change
to the other parameter might fail.

Notes:
 When using e-mail preprocessing, word-by-word and line-by-

line read mode is not available
 In a client/server environment, the default rate and volume is
set in RealSpeak Server configuration file (see “Configuration 
Files”section of “User Configuration” chapter). If the rate or
volume is set through this API call, the new value overrides
those defaults. Similarly, if the rate or volume is set through
markup in the input text, those values override both the
RealSpeak Server default and the value set via the API for
that (and only that) speak request.

Parameters:

hTtsInst Handle to a TTS engine instance
nParam Parameter to set
nValue Value to set

On the next page is a table of currently supported parameters and
some of their corresponding default values:



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/102

Parameter Acceptable Values Default Value

TTS_LANGUAGE_PARAM

ASCII character string
value stored in the
paramValue.array

field; language name.

TTS_VOICE_PARAM

ASCII character string
value stored in

paramValue.array
field; voice name. Be

careful to use an
existing voice

name/language
combination!

TTS_VOLUME_PARAM 0 to 9 (inclusive) 8
TTS_RATE_PARAM 1 to 9 (inclusive) 5

TTS_DOCUMENT_TYPE_P
ARAM

DOC_NORMAL,
DOC_EMAIL DOC_NORMAL

TTS_VOLUME_LARGESCA
LE_PARAM 0 to 100 (inclusive) 80

TTS_RATE_LARGESCALE_
PARAM 1 to 100 (inclusive) 50

TTS_MARKUP_TYPE_PAR
AM

MARKUP_NONE,
MARKUP_4SML MARKUP_NONE

TTS_OUTPUT_TYPE_PAR
AM 0, 1, 2

TTS_MARKER_MODE_PA
RAM

TTS_MRK_SENTE
NCE |

TTS_MRK_BOOK |
TTS_MRK_PARAG

RAPH
TTS_BLADE_ENABLE_PA

RAM Currently not used

TTS_BLADE_DISABLE Currently not used

TTS_LICENSE_MODE_PA
RAM

LICENSE_MODE_
DEFAULT,

LICENSE_MODE_E
XPLICIT

LICENSE_MODE_
DEFAULT

TTS_RULESET_LOAD_P
ARAM1

Pointer to
TTS_FETCHINFO_
T structure stored in

paramValue.pObj
field (see “User

Rulesets”section in
the “User 

Configuration” 
chapter for more

details)

No rulesets are loaded

TTS_RULESET_UNLOA
D_PARAM2

Pointer to
TTS_FETCHINFO_

1 Note that TTS_RULESET_LOAD_PARAM and TTS_RULESET_UNLOAD_PARAM are
parameters that can only be specified in TtsSetParam or TtsSetParams call and never in
a TtsGetParam or TtsGetParams call.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/103

T structure stored in
paramValue.pObj
field (see “User

Rulesets”section in
the “User 

Configuration” 
chapter for more

details)

2 See the previous footnote.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/104

TtsGetParam

Syntax:

TTSRETVAL TtsGetParam(
HTTSINSTANCE hTtsInst,
U16 nParam,
U16* pnValue)

Purpose: Gets the value of a given parameter. See TtsSetParam for a
list of supported parameters and possible values.

The TtsGetParam and TtsSetParam functions operate independently
of the escape sequences that can also be used to set the volume and
rate. Calls to TtsGetParam will not reflect parameter changes that
result from escape sequences embedded in the input text. The effect
of playing pre-processed email text will also not be reflected in the
values returned by the TtsGetParam function.

Parameters:

hTtsInst Handle to a TTS engine instance
nParam Specifies which parameter value

to retrieve
nValue [out] Current value of nParam



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/105

TtsSetParams

Syntax:

TTSRETVAL TtsSetParams(
HTTSINSTANCE hTtsInst,
TTS_PARAM_T* pParamList,
U16 nParamNb)

Purpose: Sets one or more TTS engine instance parameters to a
specified value. When the parameter change will take effect depends
on the parameter that is being set; when setting
TTS_VOLUME_PARAM or TTS_RATE_PARAM, the change will
take effect almost immediately. This function may be called while the
TtsProcess(Ex) function is processing, but some parameters cannot
be changed while TtsProcess(Ex) is active (e.g. language, voice,
document type, markup type, output type, marker mode).

Notes:
 See TtsSetParam note on the default rate and volume in a

client/server environment.
Parameters:

hTtsInst Handle to a TTS engine instance
pParamList List of parameters to set
nParamNb Number of parameters to set

For a table of currently supported parameters and their
corresponding values, see TtsSetParam.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/106

TtsGetParams

Syntax:

TTSRETVAL TtsGetParams(
HTTSINSTANCE hTtsInst,
TTS_PARAM_T* pParamList,
U16 nParamNb)

Purpose: Gets the values of given parameters. See TtsSetParam for a
list of supported parameters and possible values.

The TtsGetParam(s) and TtsSetParam(s) functions operate
independently of the escape sequences that can also be used to set the
volume and rate. Calls to TtsGetParams will not reflect parameter
changes that result from escape sequences embedded in the input
text. The effect of playing pre-processed email text will also not be
reflected in the values returned by the TtsGetParam function.

Parameters:

hTtsInst Handle to a TTS engine instance
pParamList Specifies which parameter values

to retrieve
nParamNb Number of parameters to

retrieve



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/107

TtsLoadUsrDictEx

Syntax:

TTSRETVAL TtsLoadUsrDictEx (
HTTSINSTANCE hTtsInst,
const DictionaryData* dictionary,
HTTSDCTEG* phDctEg)

Purpose: Loads a user dictionary instance into memory. The
dictionary is implicitly enabled with the default priority (see
TtsEnableUsrDictEx for making dictionaries explicitly enabled with a
chosen priority). In Client/Server mode, the dictionary is loaded on
the server. The file format of a dictionary is described inthe “User 
Configuration” chapter.

Each dictionary instance is initialized with the default (lowest)
priority. All dictionary instances must have a different priority (except
the default priority, which can be used by several dictionaries). The
priority can be set by TtsEnableUsrDictEx() If two dictionaries have
the default priority, the order in which the dictionaries are loaded is
important. The last loaded dictionary has the ‘highest’ priority. This 
means that when a token has to be processed, a lookup will take place
using the last loaded dictionary first.

Parameters:

hTtsInst Handle to a TTS engine instance
dictionary Const pointer to a dictionary

properties description.
phDctEg [out] Handle to a dictionary

instance.

The order in which dictionaries are looked up can be changed by
using TtsEnableUsrDictEx() and setting the priority to a different
value.

Remark

The dictionary is implicitly made enable for use with the default
priority; this behavior is different compared to TtsLoadUsrDict.

Refer to“User Configuration” chapterfor more info.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/108

TtsLoadUsrDict

Syntax:

TTSRETVAL TtsLoadUsrDict (
LH_SERVER_INFO* pServer,
HTTSDICT* phUsrDict,
char* szUserDict)

Purpose: Loads a user dictionary instance into memory. In order to
be used by a TTS engine instance, the dictionary must be enabled for
that instance by calling the TtsEnableUsrDict function. In
Client/Server mode, the dictionary is loaded on the server specified
by pServer. In local mode, the pServer parameter should be set to
NULL. The dictionary is a file whose format is described in“User 
Configuration” chapter.

Parameters:

pServer Pointer to a server information
structure. To open a local
dictionary, set this parameter to
NULL

phUsrDict [out] Handle to the loaded
dictionary instance.

szUsrDict Fully qualified pathname to the
user dictionary that will be
loaded

Remark

The dictionary is only loaded into memory and not made implicit
enabled; this behavior is different compared to TtsLoadUsrDictEx.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/109

TtsUnloadUsrDictEx

Syntax:

TTSRETVAL TtsUnloadUsrDictEx(
HTTSINSTANCE hTtsInst,
HTTSDCTEG hDctEg)

Purpose: Unloads a user dictionary instance, freeing the resources
associated with it. As opposed to TtsUnloadUsrDict, a user dictionary
instance can be unloaded when it is enabled; a user dictionary is either
enabled implicitly by TtsLoadUsrDictEx or explicitly by
TtsEnableUsrDictEx.

Parameters:

hTtsInst Handle to a TTS engine
instance.

hDctEg Handle to a dictionary instance.

Refer to“User Configuration” chapterfor more info.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/110

TtsUnloadUsrDict

Syntax:

TTSRETVAL TtsUnloadUsrDict(HTTSDICT hUsrDict)

Purpose: Unloads a user dictionary, freeing the resources associated
with it. This function will fail if the dictionary is enabled by an engine
instance. If the dictionary is enabled then call TtsDisableUsrDict to
disable the dictionary.

Parameters:

hUsrDict Handle to the loaded dictionary
that will be unloaded



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/111

TtsEnableUsrDictEx

Syntax:

TTSRETVAL TtsEnableUsrDictEx(
HTTSINSTANCE hTtsInst,
HTTSDCTEG hDctEg,
U32 priority)

Purpose: Enables a user dictionary instance and/or changes its
priority on a TTS engine instance.
Once a dictionary instance has been loaded by TtsLoadUsrDictEx()
on a TTS engine instance, the default priority has been attached; the
dictionary is enabled with default (lowest) priority.
To change the default priority, the dictionary has to be disabled by
calling TtsDisableUsrDictEx and enabled again by calling
TtsEnableUsrDictEx().
TtsEnableUsrDictEx() can also be called to enable a dictionary again
that has been disabled by a previous call of TtsDisableUsrDictEx().
If a dictionary instance has been opened in Client/Server mode then
it can only be enabled for an instance that was created on the same
server as the dictionary. Once a dictionary has been loaded using the
TtsLoadUsrDictEx function, it can be enabled for use by only one
TTS engine instance at a time; if two instances want to use the same
dictionary then the dictionary must be loaded separately for each
instance. Each dictionary has a unique priority; no two dictionaries
can have the same priority at the same time except the default
priority. The highest possible priority value is 0; the higher the
priority, the lower the value of the priority parameter should be.

Parameters:

hTtsInst Handle to a TTS engine
instance.

hDctEg Handle to a loaded dictionary
instance

priority Sets the priority for the
dictionary instance.

Remark:

Always call TtsDisableUsrDict(s)Ex before calling
TtsEnableUsrDictEx.

Refer to“User Configuration” chapterfor more info.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/112

TtsEnableUsrDict

Syntax:

TTSRETVAL TtsEnableUsrDict(
HTTSINSTANCE hTtsInst,
HTTSDICT hUsrDict)

Purpose: Enables a user dictionary on a TTS engine instance. If a
dictionary has been opened in Client/Server mode, it can only be
enabled for an instance that was created on the same server as the
dictionary. Once a dictionary has been loaded using the
TtsLoadUsrDct function, it can be enabled for use by only one
engine instance at a time. If two instances want to use the same
dictionary then the dictionary must be loaded and enabled separately
for each instance.

Parameters:

hTtsInst Handle to a TTS engine
instance.

hUsrDict Handle to a loaded dictionary
instance



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/113

TtsDisableUsrDictEx

Syntax:

TTSRETVAL TtsDisableUsrDictEx(
HTTSINSTANCE hTtsInst,
HTTSDCTEG hDctEg)

Purpose: Disables a user dictionary instance on a TTS engine
instance. The dictionary instance must first have been enabled for use
by the instance using TtsEnableUsrDictEx or TtsLoadUsrDictEx.
Note that disabling the dictionary does not unload it from memory.
To unload a dictionary, use the TtsUnloadUsrDictEx function.

Parameters:

hTtsInst Handle to a TTS engine
instance.

hDctEg Handle to a loaded dictionary
instance

Remark:

Always use this function before calling TtsEnableUsrDictEx.

Refer to“User Configuration” chapterfor more info.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/114

TtsDisableUsrDict

Syntax:

TTSRETVAL TtsDisableUsrDict(
HTTSINSTANCE hTtsInst,
HTTSDICT hUsrDict)

Purpose: Disables a user dictionary instance on a TTS engine
instance. The dictionary must first have been enabled for use by the
instance using TtsEnableUsrDict. Note that disabling the dictionary
does not unload it from memory. To unload a dictionary, use the
TtsUnloadUsrDict function.

Parameters:

hTtsInst Handle to a TTS engine
instance.

hUsrDict Handle to a loaded dictionary
instance



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/115

TtsDisableUsrDictsEx

Syntax:

TTSRETVAL TtsDisableUsrDictsEx(HTTSINSTANCE hTtsInst

Purpose: Disables all user dictionary instances on a TTS engine
instance. The dictionary instances must first have been enabled for
use by the instance using TtsEnableUsrDictEx or TtsLoadUsrDictEx.
Note that disabling the dictionaries does not unload them from
memory. To unload a dictionary, use the TtsUnloadUsrDictEx
function. To disable dictionaries one by one use
TtsDisableUsrDictEx.

Parameters:

hTtsInst Handle to a TTS engine
instance.

Refer to“User Configuration” chapterfor more info.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/116

TtsLoadG2PDictList

Syntax:

TTSRETVAL TtsLoadG2PDictList (
HTTSINSTANCE hTtsInst,
U32 u32NumDictNames,
G2P_DICTNAME* pG2PDictList)

Purpose: Loads a list of custom G2P dictionaries on a TTS engine
instance.

Parameters:

hTtsInst Handle to a TTS engine
instance.

u32NumDictNames Number of names in the array
pG2PDictList Pointer to an array of names to

enable



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/117

TtsUnloadG2PDictList

Syntax:

TTSRETVAL TtsUnloadG2PDictList (
HTTSINSTANCE hTtsInst,
U32 u32NumDictNames,
G2P_DICTNAME* pG2PDictList)

Purpose: Unloads a list of custom G2P dictionaries on a TTS engine
instance.

Parameters:

hTtsInst Handle to a TTS engine
instance.

u32NumDictNames Number of names in the array
pG2PDictList Pointer to an array of names to

disable



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/118

TtsGetG2PDictTotal

Syntax:

TTSRETVAL TtsGetG2PDictTotal (
HTTSINSTANCE hTtsInst,
U32* pu32Total)

Purpose: Retrieves the total number of custom G2P dictionaries on
the system for the current language. This allows the user to allocate
appropriate memory for calling TtsGetLoadedG2PList.

Parameters:

hTtsInst Handle to a TTS engine
instance.

pu32Total [out] Total number of G2P
dictionaries



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/119

TtsGetG2PDictList

Syntax:

TTSRETVAL TtsGetG2PDictList (
HTTSINSTANCE hTtsInst,
U32 u32NumAllocated,
G2P_DICTNAME* pG2PDictList,
U32* pu32NumRetreived)

Purpose: Gets the list of custom G2P dictionaries on the system for
the current language. Before calling this method, the user must call
TtsGetG2PDictTotal and allocate enough memory for the list.

Parameters:

hTtsInst Handle to a TTS engine
instance.

u32NumAllocated Number of G2P_DICTNAMEs
that can fit in the list

pG2PDictList [out] Pointer to a previously
allocated array of G2P
dictionary names that will be
filled

pu32NumRetreived [out] Number of names that
were actually put in the list



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/120

TtsMapCreate

Syntax:

TTSRETVAL TtsMapCreate(HTTSMAP* phTtsMap)

Purpose: Create an empty map that can be used to store the fetch
properties specified in the SpeakData, DictData. or
TTS_FETCHINFO_T structures

Parameters:

phTtsMap Pointer to a handle to a TTS
Map instance.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/121

TtsMapDestroy

Syntax:

TTSRETVAL TtsMapDestroy(HTTSMAP hTtsMap)

Purpose: Destroys a map.

Parameters:
hTtsMap Handle to a TTS Map instance.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/122

TtsMapSetChar

Syntax:

TTSRETVAL TtsMapSetChar (
HTTSMAP hTtsMap,
const char* szKey,
const char* szValue)

Purpose: Set a named property of type string (char *) on a map. The
list of available properties can be found in the header file
lh_inettypes.h.

Parameters:

hTsMap Handle to a TTS Map instance.
szKey The name of the property.
szValue The value of the property



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/123

TtsMapSetU32

Syntax:

TTSRETVAL TtsMapSetU32 (
HTTSMAP hTtsMap,
const char* szKey,
U32 nValue)

Set a named property of type unsigned 32-bit integer (U32) on a map.
The list of available properties can be found in the header file
lh_inettypes.h.

Parameters:

hTsMap Handle to a TTS Map instance.
szKey The name of the property.
nValue The value of the property



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/124

TtsMapSetBool

Syntax:

TTSRETVAL TtsMapSetBool (
HTTSMAP hTtsMap,
const char* szKey,
int bValue)

Purpose: Set a named property of type boolean (int) on a map. The
list of available properties can be found in the header file
lh_inettypes.h.

Parameters:

hTsMap Handle to a TTS Map instance.
szKey The name of the property.
bValue The value of the property



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/125

TtsMapGetChar

Syntax:

TTSRETVAL TtsMapGetChar (
HTTSMAP hTtsMap,
const char* szKey,
char** pszValue)

Purpose: Gets a named property of type string (char *) from a map.
TtsMapGetChar is responsible for the memory allocation of the
string.
Parameters:

hTsMap Handle to a TTS Map instance.
szKey The name of the property.
pszValue *pszValue The value of the

property



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/126

TtsMapFreeChar

Syntax:

TTSRETVAL TtsMapFreeChar (
HTTSMAP hTtsMap,
char* szValue)

Purpose: clean up the allocated memory in use by szValue. This
memory has been allocated by TtsGetMapChar .

Parameters:

hTsMap Handle to a TTS Map instance.
szValue The value of the property



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/127

TtsMapGetU32

Syntax:
TTSRETVAL TtsMapGetU32 (

HTTSMAP hTtsMap,
const char* szKey,
U32* pnValue)

Purpose: Gets a named property from a map. The value of the
property is a U32.

Parameters:

hTsMap Handle to a TTS Map instance.
szKey The name of the property.
pnValue The value of the property



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/128

TtsMapGetBool

Syntax:

TTSRETVAL TtsMapGetBool (
HTTSMAP hTtsMap,
const char* szKey,
int* pbValue)

Purpose: Gets a property from a map. The value of the property is a
boolean.

Parameters:

HTsMap Handle to a TTS Map instance.
SzKey The name of the property.
PbValue The value of the property



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/129

TtsCreateEngine

Syntax:

TTSRETVAL TtsCreateEngine(LH_SDK_SERVER* pServer)

Purpose: Used only for Client/Server mode. In RealSpeak v3.5 this
function created an engine instance on the server. Currently the
creation of the engine instance is deferred until TtsInitialize( ) is
called; making this function essentially a NO-OP that is only
available for backward compatibility.

This function should only be called once for each engine instance to
be created. The LH_SERVER_INFO member of the
LH_SDK_SERVER data structure is used to specify the network
information necessary to connect to the server. The other member of
the LH_SERVER_INFO data structure is a handle to the created
engine instance, which is filled in by the function. The fully initialized
structure is then passed to the TtsInitialize(Ex) function.

If the server resides locally, the IP address can be set to 127.0.0.1 or
‘localhost’ to specify the local host.

Parameters:

pServer [in/out]Pointer to a server
information structure



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/130

TtsRemoveEngine

Syntax:

TTSRETVAL TtsRemoveEngine(LH_SDK_SERVER* pServer)

Purpose: Used only for Client/Server mode. It removes an engine
instance from the server. When closing an engine instance, you
should first call the TtsUninitialize function to clean up engine
instance data.

Parameters:

pServer Pointer to a server information
structure



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/131

TtsResourceAllocate

Syntax:

TTSRETVAL TtsResourceAllocate (
HTTSINSTANCE hTtsInst,
const char* szFeature,
void* pReserved

Purpose:

Explicitly retrieve a license from the license server for a specified
RealSpeak instance.

Parameters

hTtsInst Handle to a TTS engine instance
szFeature The function is generic: use the constant

TTS_LICENSE_SPEAK for licensing functionality.
reserved This parameter is reserved for future use. Pass in NULL

Notes

The TTS_LICENSE_MODE_PARAM parameter must be set to
‘explicit’ for TtsResourceAllocate( ) to work. You can use 
TtsGetParam( ) to retrieve the value of
TTS_LICENSE_MODE_PARAM and find out whether you need to
call this function (and explicitly allocate and free licenses) or not. If
the licensing mode is set to "default," the TtsInitializeEx( ) function
implicitly allocates a license for the TTS engine instance and
TtsUnintialize() releases that license.

TtsResourceAllocate( ) may return the following error codes:

TTS_E_INVALIDPARAM An invalid feature parameter was specified
TTS_E_LIC_LICENSE_ALLOCATED A license has already been allocated for this

TTS engine instance.
TTS_E_WRONG_STATE A speak operation is active
TTS_E_LIC_NO_LICENSE There are no purchased licenses available
TTS_E_LIC_UNSUPPORTED The TTS_LICENSE_MODE_PARAM

parameter is not set to explicit.

See also

TtsResourceFree( )



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/132

TtsResourceFree

Syntax:

TTSRETVAL TtsResourceFree (
HTTSINSTANCE hTtsInst,
const char* szFeature,
void* reserved)

Purpose: Explicitly free the license for the specified Realspeak
instance.

Parameters

hTtsInst Handle to a TTS engine instance
szFeature The function is generic: use

TTS_LICENSE_SPEAK to free a license
reserved This parameter is reserved for future use. Pass in

NULL.

Notes

The TTS_LICENSE_MODE_PARAM parameter must be set to
‘explicit’ for TtsResourceFree( ) to work.

TtsResourceFree( ) may return the following error codes:

TTS_E_INVALIDPARAM An invalid feature parameter was specified
TTS_E_LIC_LICENSE_FREED A license has already been freed for this TTS

engine instance.
TTS_E_WRONG_STATE A speak operation is active.
TTS_E_LIC_NO_LICENSE There are no purchased licenses available
TTS_E_LIC_UNSUPPORTED The TTS_LICENSE_MODE_PARAM

parameter is not set to explicit

See also

TtsResourceAllocate( )



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/133

User Callbacks
This section describes the callbacks that the user (application) needs
to implement and register when using the RealSpeak SDK. Callbacks
are registered by passing their pointers in the TTSCallbacks typed
structure specified via the cbFuncs TTSPARM member when
TtsInitialize or TtsInitializeEx is used..

TTSSOURCECB

Typedef TTSRETVAL (*TTSSOURCE)(
void* pAppData,
void* pDataBuffer,
U32 nBufferSize,
U32* pnDataSize);

Purpose: This callback is only invoked when the input streaming
mode of the TTS engine is enabled.
It is used by an engine instance to request a block of input text from
the application. The function is called multiple times, allowing an
unlimited amount of data to be delivered.
Each time the application puts data into pDataBuffer, the function
should return TTS_SUCCESS.
When there is no more input data for the current TTS action the
function should return TTS_ENDOFDATA. Then, the TTS engine
knows the previous input corresponded with the last input block for a
Speak action and the call-back will no longer be called until the
TtsProcess(Ex) function returns. Any data in the buffer when
TTS_ENDOFDATA is returned is ignored.

Parameters:

pAppData Application data pointer that
was passed into TtsInitialize

pDataBuffer [out] Pointer to a data buffer
that is to be filled with the input
text. This buffer is provided by
the callback function, no need to
allocate memory for it.

nBufferSize Size in bytes of the buffer
pointed to by pDataBuffer. This
is the maximum amount of data
that can be placed in
pDataBuffer

pnDataSize [out] Number of bytes that were
actually placed in the buffer

Return Values:

TTS_SUCCESS
TTS_ENDOFDATA



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/134

Remark: When using TtsInitializeEx, this callback should not be
registered unless both the uri and data member of the SpeakData
structure can be NULL. This approach makes it possible to combine
the old TtsSource source callback function with the new
TtsProcessEx function.

When using the source call-back method, the input text must be
encoded with the native character set for the active language.
Other character sets are only supported if the input is specified via
the SpeakData structure. Refer to the description of the SpeakData
structure for an overview of all character sets or the “RealSpeak 
Languages” appendix for a list of the native character sets. 



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/135

TTSDESTCB

Typedef void* (*TTSDESTCB)(
void* pAppData,
U16 nDataType,
void* pData,
U32 nDataSize,
U32* pnBufferSize);

Purpose: This callback is invoked when the TTS engine instance
needs to deliver output data to the application.

The main input parameters of the callback are the address of an
application-provided buffer containing output data and the size in
bytes of the data. The application provides the buffer for the engine
to fill using the return value of the function, which is a pointer to the
next buffer to be filled. The size of this application buffer is set in the
*pnBufferSize parameter before the function returns. The first call to
TTSDESTCB passes in NULL for the output buffer and 0 for the
data size, indicating that the TTS engine instance has not yet been
given a buffer to fill. This also occurs each time the engine has
finished processing a message unit.

In the simplest case, the application allocates a single buffer and
returns its address every time, but the application might have a queue
of buffers to prevent unnecessary copying of data.

Parameters:

pAppData Application data pointer that
was passed into TtsInitializeEx
or TtsInitialize

nDataType Data type that is being delivered.
Currently only
TTS_OUTPUTTYPE_PCM is
supported

pData Pointer to the output data buffer
nDataSize Size of the buffer in bytes. For

optimal performance in client-
server mode, the buffer size
should be set to 4k (4096) bytes.

pnBufferSize [out] Size in bytesof the “new” 
data buffer passed back via the
return value

Return Value(s):

Pointer to the next output buffer



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/136

TTSEVENTCB

Typedef TTSRETVAL (*TTSEVENTCB)(
void* pAppData,
Void* pBuffer,
U16 nBufferSize,
U16 nEvent);

Purpose: This callback is used to return markers to the application.
Each marker represents a single event. There’s one call to
TTSEVENTCB for each separate marker. A marker is thrown before
the call to TTSDESTCB that delivers the first audio sample aligned
with it. In other words, the user receives the marker info in advance
of the corresponding speech.

The different event types are explained under the TTS_Event data
type topic.
The user has to specify which marker types he wants to receive. He
can do that by calling TtsSetParam() or TtsSetParams() for the
TTS_MARKER_MODE_PARAM parameter. See the description of
the TTS_Marker data structure for a description of the supported
marker types.
Note: The SENTENCEMARK marker is always generated.

Parameters:

pAppData Application data pointer that was passed into TtsInitialize
Pointer to a buffer containing an event type specific structure
providing the event related information; the type of the
structure for each event type is listed below.

pBuffer

Event type Structure type
TTS_EVENT_BOOKMARK TTS_BookMark
TTS_EVENT_PARAGRAPHMARK TTS_ParagraphMark
TTS_EVENT_SENTENCEMARK TTS_SentenceMark
TTS_EVENT_WORDMARK TTS_WordMark
TTS_EVENT_PHONEMEMARK TTS_PhonemeMark

nBufferSize Size of the buffer in bytes
nEvent Type of event that occurred. Can be one of the following:

TTS_EVENT_SENTENCEMARK,
TTS_EVENT_BOOKMARK, TTS_EVENT_WORDMARK,
TTS_EVENT_PHONEMEMARK,
TTS_EVENT_PARAGRAPHMARK



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/137

Error Codes
This is a list of all the possible error codes returned by RealSpeak
SDK methods:

TTS_SUCCESS,
TTS_ERROR,
TTS_E_WRONG_STATE,
TTS_E_SYSTEMERROR,
TTS_E_INVALIDINST,
TTS_E_BADCOMMAND,
TTS_E_PARAMERROR,
TTS_E_OUTOFMEMORY,
TTS_E_INVALIDPARM,
TTS_E_MISSING_SL,
TTS_E_MISSING_FUNC,
TTS_E_BAD_LANG,
TTS_E_BAD_TYPE,
TTS_E_BAD_OUTPUT,
TTS_E_BAD_FREQ,
TTS_E_BAD_VOICE,
TTS_E_NO_MORE_MEMBERS,
TTS_E_NO_KEY,
TTS_E_KEY_EXISTS,
TTS_E_BAD_HANDLE,
TTS_E_TRANS_EMAIL,
TTS_E_NULL_STRING,
TTS_E_INTERNAL_ERROR,
TTS_E_NO_MATCH_FOUND,
TTS_E_NULL_POINTER,
TTS_E_BUF_TOO_SMALL,

TTS_W_UDCT_ALREADYLOADED,
TTS_E_UDCT_INVALIDHNDL,
TTS_E_UDCT_NOENTRY,
TTS_E_UDCT_MEMALLOC,
TTS_E_UDCT_DATAFAILURE,
TTS_E_UDCT_FILEIO,
TTS_E_UDCT_INVALIDFILE,
TTS_E_UDCT_MAXENTRIES,
TTS_E_UDCT_MAXSOURCESPACE,
TTS_E_UDCT_MAXDESTSPACE,
TTS_E_UDCT_DUPLSOURCEWORD,
TTS_E_UDCT_INVALIDENGHNDL,
TTS_E_UDCT_MAXENG,
TTS_E_UDCT_FULLENG,
TTS_E_UDCT_ALREADYINENG,
TTS_E_UDCT_OTHERUSER,
TTS_E_UDCT_INVALIDOPER,
TTS_E_UDCT_NOTLOADED,
TTS_E_UDCT_STILLINUSE,
TTS_E_UDCT_NOT_LOCAL,



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/138

TTS_E_UDCT_COULDNOTOPENFILE,
TTS_E_UDCT_FILEREADERROR,
TTS_E_UDCT_FILEWRITEERROR,
TTS_E_UDCT_WRONGTXTDCTFORMAT,
TTS_E_UDCT_LANGUAGECONFLICT,
TTS_E_UDCT_INVALIDENTRYDATA,
TTS_E_UDCT_READONLY,
TTS_E_UDCT_ACTIONNOTALLOWED,
TTS_E_UDCT_BUSY,
TTS_E_UDCT_PRIORITYINUSE,
TTS_E_UDCT_ALREADYENABLED

TTS_E_MODULE_NOT_FOUND,
TTS_E_CONVERSION_FAILED,
TTS_E_OUT_OF_RANGE,
TTS_E_END_OF_INPUT,
TTS_E_NOT_COMPATIBLE,
TTS_E_INVALID_POINTER,
TTS_E_FEAT_EXTRACT,
TTS_E_MAX_CHANNELS,
TTS_E_ALREADY_DEFINED,
TTS_E_NOT_FOUND,
TTS_E_NO_INPUT_TEXT,

/* Client/Server errors */
TTS_E_NETWORK_PROBLEM,
TTS_E_NETWORK_TIMEOUT,
TTS_E_NETWORK_RETRANSMIT,
TTS_E_NETWORK_FUNCTION_ERROR,
TTS_E_QUEUE_FULL,
TTS_E_QUEUE_EMPTY,

TTS_E_ENGINE_NOT_FOUND,
TTS_E_ENGINE_ALREADY_INITIALIZED,
TTS_E_ENGINE_ALREADY_UNINITIALIZED,
TTS_E_DICTIONARY_ALREADY_UNLOADING,
TTS_E_INSTANCE_BUSY,

TTS_E_NOTINITIALIZED,
TTS_E_NETWORK_CONNECTIONREFUSED,
TTS_E_NETWORK_OPENPORTFAILED,
TTS_E_NETWORK_SENDFAILED,
TTS_E_NETWORK_CONNECTIONCLOSED,
TTS_E_ENGINE_OVERLOAD,

TTS_E_UNKNOWN,

/* License Errors */
TTS_E_LIC_NO_LICENSE,
TTS_E_LIC_LICENSE_ALLOCATED,
TTS_E_LIC_UNSUPPORTED,
TTS_E_LIC_LICENSE_FREED,
TTS_E_LIC_SYSTEM_ERROR,

/* Non Fatal Errors or Warnings */



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IV/139

TTS_W_WARNING,
TTS_W_ENDOFINPUT,

/* Inet Errors */
TTS_E_INET_FATAL,
TTS_E_INET_INPUTOUTPUT,
TTS_E_INET_PLATFORM,
TTS_E_INET_INVALID_PROP_NAME,
TTS_E_INET_INVALID_PROP_VALUE,
TTS_E_INET_NON_FATAL,
TTS_E_INET_WOULD_BLOCK,
TTS_E_INET_EXCEED_MAXSIZE,
TTS_E_INET_NOT_ENTRY_LOCKED,
TTS_E_INET_NOT_ENTRY_CREATED,
TTS_E_INET_UNSUPPORTED,
TTS_E_INET_UNMAPPED,
TTS_E_INET_FETCH_TIMEOUT,
TTS_E_INET_FETCH_ERROR,
TTS_E_INET_NOT_MODIFIED,



RealSpeak Telecom
Software Development Kit

Chapter V
SAPI5 Compliance

R ea l S p ea k
V4.0 Manual



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/141

SAPI5 Compliance

API Support
This section lists which Microsoft Text-To-Speech API v5.1
functions (Text-To-Speech engine Interface) are supported by
ScanSoft. For more details on each of these functions, see the
chapters on Text-To-Speech Engine Interface in the Microsoft
Speech SDK v5.1 Reference. For more information, see the language
specific manuals.

Text-To-Speech engine Interface

Interface Function Name Availability
ISpTTSEngine Speak Supported

GetOutputFormat Supported

ISpTTSEngineSite ISpEventSink Supported
GetActions Supported
Write Supported
GetRate Supported
GetVolume Supported
GetSkipInfo Supported
CompleteSkip Supported



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/142

Text-To-Speech Interface

With the exception of IsUISupported and DisplayUI, the Microsoft
SAPI5 layer supports all functions of the ScanSoft Text-To-Speech engine
interface.

Interface Function Name Availability
IspVoice SetOutput Supported

GetOutputObjectToken Supported
GetOutputStream Supported
Pause Supported
Resume Supported
SetVoice Supported
GetVoice Supported
Speak Supported
SpeakStream Supported
GetStatus Supported
Skip Supported
SetPriority Supported
GetPriority Supported
SetAlertBoundary Supported
GetAlertBoundary Supported
SetRate Supported
GetRate Supported
SetVolume Supported
GetVolume Supported
WaitUntilDone Supported
SetSyncSpeakTimeout Supported
GetSyncSpeakTimeout Supported
SpeakCompleteEvent Supported
IsUISupported Not Supported
DisplayUI Not Supported



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/143

SAPI5 Interface
In this section you will find an alphabetical list of member functions
of the SAPI5 Text-To-Speech interface (IspVoice).
For a description of each member function, see the chapter on Text-
To-Speech Interfaces (ISpVoice), in the Microsoft Speech SDK v5.1
Reference.

ISpVoice Interface

This interface is the only interface for the application to access the
Text-To-Speech engine. The ISpVoice interface enables an
application to perform text synthesis operations. Applications can
speak text strings and text files, or play audio files through this
interface. All of these can be done synchronously or asynchronously.
Applications can choose a specific TTS voice using
ISpVoice::SetVoice. The state of the voice (for example, rate, pitch,
and volume), can be modified using SAPI XML tags that are
embedded into the spoken text. Some attributes, like rate and volume,
can be changed in real time using ISpVoice::SetRate and
ISpVoice::SetVolume. Voices can be set to different priorities using
ISpVoice:: SetPriority.
ISpVoice inherits from the ISpEventSource interface. An ISpVoice
object forwards events back to the application when the
corresponding audio data has been rendered to the output device.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/144

I S p V o i c e : :ISpEventSource

No engine specific remarks.

ISpVoice::SetOutput

The ScanSoft Text-To-Speech engine supports only 8 kHz in this
product. I f the application chooses other frequencies, then the
Microsoft SAPI5 layer will use conversion software installed in the
PC, which might cause speech quality degradation.

ISpVoice::GetOutputObjectToken

See ISpVoice::SetOutput.

ISpVoice::GetOutputStream

No engine specific remarks.

ISpVoice::Pause

No engine specific remarks.

ISpVoice::Resume

No engine specific remarks.

ISpVoice::SetVoice

No engine specific remarks.

ISpVoice::GetVoice

No engine specific remarks.

ISpVoice::Speak

No engine specific remarks.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/145

ISpVoice::SpeakStream

No engine specific remarks.

ISpVoice::GetStatus

No engine specific remarks.

ISpVoice::Skip

No engine specific remarks.

I Sp Vo i c e : :SetPriority

No engine specific remarks.

ISpVoice::GetPriority

No engine specific remarks.

ISpVoice::SetAlertBoundary

No engine specific remarks.

ISpVoice::GetAlertBoundary

No engine specific remarks.

ISpVoice::SetRate

No engine specific remarks.

ISpVoice::GetRate

No engine specific remarks.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/146

ISpVoice::SetVolume

The default volume of ScanSoft voices is 90 instead of 100.

ISpVoice::GetVolume

The default volume of ScanSoft voices is 90 instead of 100.

ISpVoice::WaitUntilDone

No engine specific remarks.

ISpVoice::SetSyncSpeakTimeout

No engine specific remarks.

ISpVoice::GetSyncSpeakTimeout

No engine specific remarks.

ISpVoice::SpeakCompleteEvent

No engine specific remarks.

ISpVoice::IsUISupported

This member function is not supported by ScanSoft’s Text-To-
Speech engine.

ISpVoice::DisplayUI

This member function is not supported by ScanSoft’s Text-To-
Speech engine.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/147

SAPI5 XML Tags

In this section you will find an alphabetical list of the Text-To-Speech
XML tags that are supported by Microsoft SAPI5. XML tags can be
embedded in the input text to change the Text-To-Speech output.
For each XML tag, you will find the following information:

Description Gives a description of the XML tag
Syntax Displays the syntax of the XML tag
Comments Gives remarks that are specific to ScanSoft’s 

support of the XML tag
Example Shows how to use the XML tag


NOTE

12. Only correctly specified XML tags are converted to internally
embedded commands. Incorrectly specified control tags are
treated as white spaces.

13. The Text-To-Speech control tags that are not supported are
not described.

Please see the “Microsoft Speech SDK, V5.1” reference, chapter 
“Text-To-Speech Interface”, for more details on the use and syntax 
of XML tags, as well as on each XML tag separately.

Control tag Availability
<Bookmark> Supported
<Context> Supported
<Emph> Supported
<Lang> Supported
<Partofsp> Supported
<Pitch> Not supported
<Pron> Supported
<Rate> Supported
<Silence> Supported
<Spell> Supported
<Voice> Supported
<Volume> Supported



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/148

Bookmark

Description

This XML tag indicates a bookmark in the text.

Syntax

<bookmark mark=string/>

Comments

None.

Example

This sentence contains a
<bookmark mark=”bookmark_one”/> bookmark.

For more detailed information, see the “Microsoft Speech SDK 
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/149

Context

Description

This XML tag sets the context for the text that follows, determining
how specific strings should be spoken.

Syntax

<Context ID=string> Input Text </Context>

Comments

1. The following context types are supported:

\context ID=”date_mdy”\
\context ID=”date_dmy”\
\context ID=”date_ymd”\
\context ID=”date_ym”\
\context ID=”date_my”\
\context ID=”date_dm”\
\context ID=”date_md”\
\context ID=”date_year”\
\context ID=”time_timeofday”\
\context ID=”time_hms”\
\context ID=”time_hm”\
\context ID=”time_ms”\
\context ID=”number_decimal”\
\context ID=”currency”\

2. Some languages do not support this XML tag. See the release note for language specific
limitations.

Example

Today is <context ID=”date_mdy”>12/22/99</Context>.

For more detailed information, see the “Microsoft Speech SDK 
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/150

Emph

Description

This XML tag emphasizes the next sentence to be spoken.

Syntax

<Emph> Input text </Emph>

Comments

This tag is only supported by the ScanSoft engine to emphasize the
whole sentence.

Example

<emph>John and Peter are coming tomorrow</emph>.

For more detailed information, see the “Microsoft Speech SDK
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/151

Lang

Description

This XML tag indicates a language change in the text. This tag is
handled by the Microsoft SAPI5 Layer.

Syntax

<Lang langid=string> Input text </Lang>

Comments

None.

Example

<lang langid="409"> A U.S. English voice should speak this
sentence. </lang>

For more detailed information, see the “Microsoft Speech SDK 
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/152

Partofsp

Description

This XML tag indicates the part-of-speech of the next word. This tag
is effective only when the word is in the Lexicon and has the same
part-of-speech setting as in the Lexicon.

Syntax

<Partofsp Part=string> word </Partofsp>

Comments

The following part-of-speech types are supported:

 <Partofsp Part=”noun”>
 <Partofsp Part=“verb”>
 <Partofsp Part=“modifier”>
 <Partofsp Part=“function”>
 <Partofsp Part=“interjection”>
 <Partofsp Part=“unknow”>

Example
<Partofsp Part="noun"> A </Partofsp> is the first letter of the
alphabet.

For more detailed information, see the “Microsoft Speech SDK 
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/153

Pitch

Description

This XML tag is used to control the pitch of a voice.

Syntax

<Pitch Absmiddle=string> Input Text </Pitch>

Comments

ScanSoft’s RealSpeak Engine does not support this tag.

Example

<pitch absmiddle=”5”>This is a test.</pitch>

For more detailed information, see the “Microsoft Speech SDK 
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/154

Pron

Description

The Pron tag inserts a specified pronunciation. The voice will process
the sequence of phonemes exactly as they are specified. This tag can
be empty, or it can have content. If it does have content, it will be
interpreted as providing the pronunciation for the enclosed text. That
is, the enclosed text will not be processed as it normally would be.

The Pron tag has one attribute, Sym, whose value is a string of white
space separated phonemes.

Syntax

<pron sym=phonetic string> or

<pron sym=phonetic string>Input text</pron>

Comments

The phoneme table can be found in the language specific manual:
“ScanSoft Telecom RealSpeak SAPI5 V3.51, User’s Guide for 
<language>”.
If no phoneme table is available for a specific language, then this tag
is not supported for that language.

Example

<pron sym="h eh 1 l ow & w er 1 l d"> hello world </pron>

For more detailed information, see the “Microsoft Speech SDK 
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/155

Rate

Description

The Rate tag controls the rate of a voice. The tag can be empty, in
which case it applies to all subsequent text, or it can have content, in
which case it only applies to that content.
The Rate tag has two attributes, Speed and AbsSpeed, one of which
must be present. The value of both of these attributes should be an
integer between negative ten and ten. Values outside this range may
be truncated by the engine (but are not truncated by SAPI). The
AbsSpeed attribute controls the absolute rate of the voice, so a value
of ten always corresponds to a value of ten, a value of five always
corresponds to a value of five.

Syntax

<rate absspeed=number>Input text</rate>

or

<rate speed=number>Input text</rate>

Comments

None.

Example

<rate absspeed=”5”>This is a sentence.</rate>

or

<rate speed=”5”>This is a faster sentence. </rate>

<rate speed=”-5”>This is a slower sentence. </rate>

For more detailed information, see the “Microsoft Speech SDK 
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/156

Silence

Description

The Silence tag inserts a specified number of milliseconds of silence
into the output audio stream. This tag must be empty, and must have
one attribute, Msec.

Syntax

<silence msec=number>Input text

Comments

None.

Example

<silence msec=”500”>This is a sentence.

For more detailed information, see the “Microsoft Speech SDK 
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/157

Spell

Description

The Spell tag forces the voice to spell out all text, rather than using its
default word and sentence breaking rules, normalization rules, and so
forth. All characters should be expanded to corresponding words
(including punctuation, numbers, and so forth). The Spell tag cannot
be empty.

Syntax

<spell>Input text</spell>

Comments

None.

Example

<spell>UN</spell>

For more detailed information, see the “Microsoft Speech SDK 
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/158

Voice

Description

The Voice tag selects a voice based on its attributes, Age, Gender,
Language, Name, Vendor, and VendorPreferred. The tag can be
empty, in which case it changes the voice for all subsequent text, or it
can have content, in which case it only changes the voice for that
content.

The Voice tag has two attributes: Required and Optional. These
correspond exactly to the required and optional attributes parameters:
ISpObjectTokenCategory EnumerateTokens and SpFindBestToken.
The selected voice follows exactly the same rules as the latter of these
two functions. That is, all the required attributes are present, and
more optional attributes are present than with the other installed
voices (if several voices have equal numbers of optional attributes one
is selected at random).

For more details, see Object Tokens and Registry Settings in the
“Microsoft Speech API V5.1”.

In addition, the attributes of the current voice are always added as
optional attributes when the Voice tag is used. This means that a
voice that is more similar to the current voice will be selected over
one that is less similar.
If no voice is found that matches all of the required attributes, no
voice change will occur.

Syntax

<voice required=type of info.=info.>Input text</voice>

or

<voice optional=type of info.=info.>Input text</voice>

Comments

None.

Example

<voice required="Gender=Female;Age!=Child">
A female non-child should speak this sentence, if one exists.
</voice> <voice required="Age=Teen">
A teen should speak this sentence - if a female, non-child teen is
present, she will be selected over a male teen, for example. </voice>



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/159

For more detailed information, see the “Microsoft Speech SDK 
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/160

Volume

Description

The Volume tag controls the volume of a voice. The tag can be
empty, in which case it applies to all subsequent text, or it can have
content, in which case it only applies to that content.
The Volume tag has one required attribute: Level. The value of this
attribute should be an integer between zero and one hundred. Values
outside this range will be truncated.

Syntax

<volume level=number>Input text</volume>

Comments

The default volume of ScanSoft voices is 90 instead of 100.

Example

<volume level=”50”>This is a sentence .</volume>

For more detailed information, see the “Microsoft Speech SDK 
V5.1” reference, chapter “Text-To-Speech Interface” and “XML TTS 
Tutorial”.

Load ScanSoft User Dictionaries

The user can enable the RealSpeak Solo SAPI5 layer to load the
ScanSoft proprietary user dictionary automatically in order to provide
better pronunciation for especially proper names, geographical names
and so on. This mechanism provides an alternative solution for the
SAPI5 lexicon.
The user can specify the list of user dictionaries in the registry per
language. What to be registered is as below:

In
HKEY_LOCAL_MACHINE\SOFTWARE\ScanSoft\TTS\SAPI5
\Install\<Language code (e.g. ENU for American English)>, you
need to create strings (sequential number and full pathname of the
user dictionary) as below:
“1” “c:\dict1.dbc”
“2” “d:\American English\dict2.bdc”

If there is same entry in multiple dictionaries, then late loaded
dictionary will have higher priority. So, the dictionary in “2” will have
higher priority than in “1”. The full pathname of the user dictionary 



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/161

should be shorter than 256 characters. The 3 letter language code is as
below table:

3-letter language codes

Language name language
code

American English ENU
Australian English ENA
Belgian Dutch DUB
Brazilian Portuguese PTB
British English ENG
Canadian French FRC
Cantonese CAH
Danish DAD
Dutch (Netherlands) DUN
French FRF
German GED
Italian ITI
Japanese JPJ
Korean KOK
Mandarin Chinese MNC
Mexican Spanish SPM
Norwegian NON
Polish PLP
Portuguese (European) PTP
Russian RUR
Spanish (European) SPE
Swedish SWS

SAPI5 Client/Server
The client/server mechanism for SAPI5 interface provides the user
with an environment where multiple thin clients can communicate
with one or multiple remote server(s) to request speech output for a
given input text.

Required Software

To configure the RealSpeak Telecom SDK in the client/server mode
for the SAPI5 interface, you need to install the RealSpeak Telecom
SDK package (language independent package) both on the client and
on the server side.
Besides the RealSpeak Telecom SDK, you also need to install the
Microsoft SAPI5.1 run-time package on the client side.
For the server you need to install at least one language to support
basic Text-to-Speech features.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/162

The required version of RealSpeak Telecom SDK is 4.0.4 or higher.

Required Hardware

The application developers should decide how many PC’s are 
required for their application. To run the RealSpeak Telecom SDK in
the client/server mode by using the SAPI5 interface, you need at least
two systems (one for the client and another for the server). Each
client PC can connect to up to 64 servers; the number of client
systems is not limited.

Installing SAPI5 Layer

To run the SAPI5 interface in the client/server mode, you need a
SAPI5 layer module that is different from the one that is used in the
standard RealSpeak Telecom SDK. The SAPI5 layer module is called
“rs_sapi5_telecom_cs.dll”; it has to be copied to the directory 
“<install path (e.g. “c:\program files\scansoft\RealSpeak
v4.0”)>\speech\components\common”.

Change in the Registry

To enable the SAPI5 in client/server mode, you need to modify the
registry. In the registry, for the key
<\HKEY_CLASSES_ROOT\CLSID\{E1E6344F-DDF6-41fb-
8F76-FC62CDFC3FF5}\InprocServer32>, you need to change the
default value from “rs_sapi5_telecom.dll” to 
“rs_sapi5_telecom_cs.dll”.
If you want to set it back to in-process mode, you need to change
“rs_sapi5_telecom_cs.dll” to “rs_sapi5_telecom.dll”.

Modifications in the Configuration File

You must add the server information to the configuration file in the
client system. The configuration file (ttsserver.xml) can be found in
the directory “<install path (e.g. “c:\program
files\scansoft\RealSpeak v4.0”)>\config”.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/163

Add Server Information

The list of servers can be added to “ttsserver.xml” as indicated below:

<tts_servers>
<tts_server name="10.151.11.31">
All

</tts_server>
<tts_server name="10.151.11.32">
American English,Australian English

</tts_server>
</tts_servers>

You can specify multiple servers up to a maximum of 64 servers; you
can also specify supported languages for each server. If the server
supports all languages, then you can specify “All”. 
If the server supports some languages, then you can specify the list of
languages and “,” is used as a delimiter between languages. An 
example is “German,French”.

Changes in the Registry

To allow the SAPI5 layer to read the server information, you need to
specify the location of SAPI5 configuration file in the registry.

In
<\HKEY_LOCAL_MACHINE\SOFTWARE\ScanSoft\RealSpeak
4.0>, you need to specify the SAPI5 configuration file as in the
example below:

SAPI5ConfigFiles=c:\Program Files\ScanSoft\RealSpeak
4.0\config\ttsserver.xml

Load User Dictionaries

To load the user dictionaries in the client/server mode, you need to
perform two tasks. The first task is to modify the configuration file in
the server to specify a directory that has user dictionaries.
In the configuration file you can specify a directory like below
example:

<dictionary_default_path>c:\usrdict</dictionary_default_path>

In the client you can set a list of user dictionaries by listing them in
the registry. You can find the information in chapter 5 in this manual.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/164

The SAPI5 layer in the client checks the registry to find a list of user
dictionaries that are to be loaded. It sends the list of user dictionaries
to the server that loads the dictionaries from the directory specified in
<dictionary_default_path>.
All user dictionaries that are to be loaded must exist in the directory
specified in <dictionary_default_path>.
Support is possible only for ScanSoft proprietary user dictionary; the
format of the user dictionary must be binary. The ScanSoft
proprietary user dictionary can be edited by UDE (User Dictionary
Editor).

Microsoft Lexicon

The SAPI5 lexicons in the client are not supported in this version.

Enable Logging

To enable the logging facility in the server, please read the
“Configuration Files” section of the “User Configuration” chapter.
This section provides the information on how to enable the server
logging , how to set the logging level and so on, by modifying the
server configuration file (by default, ttsserver.xml).

The client requires another action than the server. Do not modify the
configuration file; instead, set a number of values in the registry so
as to enable the logging mechanism or to set the logging level.
In
<\HKEY_LOCAL_MACHINE\SOFTWARE\ScanSoft\RealSpeak
4.0\Log>,
you can specify the value in the registry as mentioned below:

Enable=<TRUE or FALSE>
Log File=File name (e.g. c:\log.txt)
Log Level=(0 or 1)
Log Size=size (in byte) of log file (e.g. 100000000)

The higher the log level, the more information will be logged in the
logging file.
In
<\HKEY_LOCAL_MACHINE\SOFTWARE\ScanSoft\RealSpeak
4.0\Log>
the key “Log” is not automatically created by the RealSpeak Telecom
SDK installation package. So you need to create the key “Log” 
manually.



SAPI5 Compliance

Chapter VIII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter V/165



RealSpeak Telecom
Software Development Kit

Chapter VI
SSML Support

R ea l S p ea k
V4.0 Manual



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/167

SSML Support
Introduction and Purpose

SSML (Speech Synthesizer Markup Language) is part of a set of
markup specifications by the W3C for voice browsers. SSML was
designed to provide a rich, XML-based markup language for assisting
the generation of synthetic speech in web and other applications. The
essential role of the markup language is to provide a standard way to
control aspects of speech such as pronunciation, volume, pitch and
rate.
The Telecom RealSpeak/Host SDK provides a built-in preprocessor
that supports a large portion of the SSML 1.0 September 2004
Recommendation (REC). Moreover RealSpeak extends SSML with a
number of Scansoft specific elements/attributes.
The set supported by Scansoft is called “ScanSoft SSML” (4SML).  
Please refer to language specific documentation for language-specific
support for certain tags.

Links

Some links to related W3C specifications:
 http://www.w3.org/TR/2002/WD-speech-synthesis-20020405   “Speech 

SynthesisMarkupLanguage Specification–W3C Working Draft 5 April 2002”

 http://www.w3.org/TR/2002/WD-speech-synthesis-20021202  “Speech Synthesis 
Markup Language Specification 1.0– W3C Working Draft 02 December 2002”

 http://www.w3.org/TR/2004/REC-speech-synthesis-20040907  “Speech 
SynthesisMarkupLanguage Specification Version 1.0–W3C Recommendation 7
September 2004”

SSML Compliance

Support for the SSML 1.0 REC September 2004

As mentioned before, we aim to be compliant with the W3C
specification. At the time of writing, this was the September 2004
Recommendation. We support all elements/attributes specified in the
specification, regardless of their rating (“MUST", "REQUIRED",
"SHALL", "SHOULD", “RECOMMENDED", "MAY” 
“OPTIONAL”) except where this proves hard to implement due to
the nature of the RealSpeak engine. If so, this markup element will be



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/168

detected, parsed, but ignored. This applies to the following elements
and or properties:

1. The “IPA” alphabet is not supported for <phoneme> elements 
(SSML “should” level conformance requirement). Phoneme
strings must be transcribed using the Scansoft proprietary
phonemic alphabet, being “UNIPA” (which we believe to be a 
more ‘developer-friendly’ solution).  Error! Unknown
document property name. will fall-back to the element’s 
content when the specified alphabet is not “unipa”. Note that the 
requirement that vendor-defined alphabets must be of the form “x-
organization" or "x-organization-alphabet” is not yet adhered 
to.

2. <emphasis>: “none” level is not supported.  Using this element 
does not necessarily lead to audible differences as the system may
elect ignoring these targets for realizing optimal natural speech
output.

3. <mark> only supports marks with names that are unsigned 32-bit
integers. Marks that do not meet this requirement are ignored.

4. <voice>
a. The “age”, “gender”, “name” and “variant” attribute are 
only supported when specified together with “xml:lang”.

b. The “age” attribute is supported.  But to make this 
attribute useful, a set of voices with varying age over the
same language and gender needs to be installed. At the
time of writing this would require the use of custom voices.

5. <prosody>
a. Duration, pitch, pitch-range, and contour values are

ignored.
b. The volume is not persistent over voice switches. (Rate is
neither but that’s conformant with the spec.)

6. <break strength=”none”> will only have will only have an audible 
effect when without the <break> element, the TTS engine would
have inserted a sentence break.

7. <meta>: http-equiv is not supported
8. <sayas>

Standardized values for the <sayas> attributes will be published in
a W3C Group Note. For an extensive list of RealSpeak 4SML
supported say-as attributes and attribute values, see the“Say-as
Support” section further in this document. Please note that
Scansoft is involved in this Working Group and is committed to
support any guidelines that may follow from this.

Legacy support for the SSML 1.0 WD December 2002

RealSpeak supports the elements/attributes of the December 2002
SSML 1.0 WD with the following exceptions:



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/169

1. The same limitations as listed under the September 2004
REC compliance section apply except for the <break>
element (see below)

2. <break>
a) Symbolic values for the “time” attribute are 

ignored. They are supported when specified via
the April 2002 WD “size” attribute.

b) The value “none” for the “time” attribute is 
processed in the same way as the value “none” 
for the “strength” attribute (available under the 
1.0 REC). It has the effect that a normally
inserted sentence break will be removed. .
Whereas according to the December 2002 spec
the “time” value "none" indicates that a normal
break boundary should be used.

3. <prosody rate> is always interpreted as per the final SSML
1.0 REC.  April 2002 and December 2002 spec’s interpret a
bare number as a word-per-minute value, while in the final
SSML recommendation a bare number is a multiplier of
the default rate. It proved not feasible to auto-detect which
specification the user is working against (the <speak>
element will specify the version as “1.0” for all these 
versions).

Legacy Support for the SSML 1.0 WD April 2002

RealSpeak supports the elements/attributes of the April 2002 SSML
1.0 WD with the following exceptions:

1. The same limitations as listed under the September 2004
REC compliance section apply except for the <break>
element (see below)

2. <break>
a) We continue to support the time attribute with

symbolic values. However, avoid using it in new
designs as it is considered ‘deprecated’. 

b) The value “none” for the “size” attribute is
processed in the same way as the value “none” for 
the “strength” attribute (available under the 1.0 
REC). It has the effect that a normally inserted
sentence break will be removed. . Whereas
according to the April 2002 spec the “size” value 
"none" indicates that a normal break boundary
should be used.

3. Rate is always interpreted as per the final SSML 1.0 REC.
See the previous section on the Dec 2002 WD for more
details.

4. Support for the <say-as> element is language specific.
Note that RealSpeak supports both the <sayas> syntax of



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/170

the April 2002 SSML which specifies the “type” attribute 
and the Dec 2002 and more recent versions which specify
the “interpret-as”, “format” and “detail” attributes.

Volume Scale Conversion

The realization of volume numerical values is SSML conformant. The
default value is “100”. and the scale is amplitude linear.  Note that 
although the SSML specifies that the range is 0 to 100, we internally
support a more extended range (0 to 200). The values above 100 can
only be reached via relative changes or the symbolic values “loud” 
and “x-loud”.  
Note that previous RealSpeak versions (v4.0.3 and older)
implemented an amplitude logarithmic volume (or dB) scale with
“80” as the default value. This default volume maps to the current
default value “100”.  The old volume scale corresponds with the 
native volume markup scale listed in the rightmost column of the
table below.
The table below describes the mapping between the SSML volume
scale and the Scansoft native volume scale (where the volume value
is an integer in the range 0 to 100 which can be set via the native
<esc>\vol=x\ markup).

SSML
value

Amplitude
amplification

factor

Loudness in
dB

SSFT
volume
value

0 0.00 -d B 0
10 0.10 -20.0 dB 13
20 0.20 -14.0 dB 33
30 0.30 -10.5 dB 45
40 0.40 -8.0 dB 53
50 0.50 -6.0 dB 60
60 0.60 -4.4 dB 65
70 0.70 -3.1 dB 70
80 0.80 -1.9 dB 74
90 0.90 -0.9 dB 77

100 1.00 0.0 dB 80
(141) 1.41 +3.0 dB 90
(200) 2.00 +6.0 dB 100

The formula for converting the SSML value Vssml to the amplification
factor A is very simple:

A = Vssml / 100

The formula for converting a non-zero amplification factor A to the
corresponding ssft volume value Xssft:

Xssft = Round((20 * log10(A) / 0.30) + 80)



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/171

The formula for converting a non-zero ssft value Xssft to the dB
value Y:

Y (dB) = (Xssft - 80) * 0.3 dB

The SSML symbolic values are mapped as follows:

SSML
value

Symbolic
value

Amplitude
amplification

factor

Loudness in
dB

0 silent 0.00 -dB
18 x-soft 0.18 -15 dB
50 soft 0.50 -6 dB

100 medium 1.00 0 dB
(141) loud 1.41 +3 dB
(200) x-loud 2.00 +6 dB

Rate Scale Conversion

We fully support SSML rate markup. The following tables/rules can
be used to map SSML markup to equivalent SSFT native markup.
The default value is “1.00”. 

SSML
“number” 
value

Symbolic
value

SSML
percentage
w.r.t. voice

default

SSFT native
rate value

0.50 x-slow -50% 1
0.70 slow -30% 20
1.00 medium +0% 50
1.60 fast +60% 70
2.50 x-fast +150% 100

SSML descriptive and “number” values change the rate against the 
voice default. All other rate changes are relative against the (XML)
parent element.

The formula to convert an SSML <prosody rate=” Xssml”> value into 
an SSFT <esc>/rate=Yssft/ value. Do note that rate changes are
relative against parent. I.e. you must cumulate your SSML value over
all ancestors before converting.

For increasing the rate (Xssml > 1.0)

Yssft = Round(50 + (Xssml - 1) / 0.03)

When decreasing the rate (Xssml < 1.0)

Yssft = Round(50 - (1 - Xssml) * 100)



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/172

Break Implementation

A <break strength=”xxx”> element is implemented as a pause of a 
certain duration, so it directly maps to an SSFT <esc>\pause=x\ tag.
The only exception is the SSML <break strength=”none”> element 
which maps to an SSFT <esc>C tag.
The table below specifies the mapping and the corresponding native
markup.

Symbolic
value

Duration in
ms of the
pause

Native markup
value

x-weak 100 <esc>\pause=100\
weak 200 <esc>\pause=200\

medium 400 <esc>\pause=400\
strong 700 <esc>\pause=700\

x-strong 1200 <esc>\pause=1200\

When using both the ‘time’ and the ‘strength’ attributes, the ‘time’ 
attribute gets presidency.

Say-as Support

While the W3C SSML 1.0 Recommendation specifies the say-as element
and its semantics with the “interpret-as”, “format”, and “detail” 
attributes, it does not define any specific say-as types. Standardized
values for the <sayas> attributes will be published in a W3C Group
Note. Please note that Scansoft is involved in this Working Group and
is committed to support any guidelines that may follow from this.
RealSpeak supports both the <sayas> syntax of the April 2002 SSML
which specifies the “type” attribute and the Dec 2002 and more recent 
versions. The RealSpeak supported say-as types following the more
recent SSML specifications are listed below. They generally correspond
with the types defined by Speechify v3. The table below provides some
guidance to their usage. The say-as types for the older versions are
listed in the “RealSpeak v4.0User’s Guide”for each language but use of
them is discouraged.



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/173

Say-as
“interpret-as” 
attribute

Say-as
“format” 
attribute

Notes and cautions

acronym Sequences of letters and/or digits are
spoken as “words” whenever this is 
considered natural in the target language.
E.g. NATO, UNESCO for English. Else,
letters and digits are pronounced
individually. E.g. API for English.

Use detail "strict" to force spelling mode. In that
case punctuation is also spoken (e.g., speaking a
comma as “comma”). Acronym with detail 
“strict” is equivalent to “letters” with detail 
“strict”.

address Used for postal addresses.

cardinal Supported if relevant in the target language.
Roman cardinals are often supported.

currency (peso and dollar
for NA Spanish)

Contained text is a currency amount (the
currency symbol may be present in the enclosed
text). Supports currencies as commonly
specified in the country corresponding to the
target language.
For example, $, £ and ¥.for US English

date d,dm,dmy,m,md,
mdy,my,y,ym,ym

d
decimal Same as “number” with format “decimal”.  

Use of the separator for the integral part is
optional. E.g. 123456.123 and 123,456.123
are pronounced in the same way for US
English.

digits Numbers must be read digit by digit.
Decimal periods or commas should be
pronounced as well. Same as “number” 
with format “digits”.

duration h,hm,hms,m,ms,
s

For example: “duration” with format “hms” is 
read out as“<h> hour(s), <m> minute(s), and 
<s> seconds”(assuming xml:lang was specified
as “en-US”)

fraction Same as “number” with format ”fraction”. 
E.g. to pronounce“1/3” as one third.

letters Pronounce alphanumerical strings as a
sequence of individual letters and/or
digits. With detail “strict” punctuation is 
also spoken (e.g. speaking a comma as



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/174

Say-as
“interpret-as” 
attribute

Say-as
“format” 
attribute

Notes and cautions

“comma”).
Letterswith detail “strict” is equivalent to 
“acronym” with detail “strict”.  For true spelling 
of all readable characters, use the “interpret-as” 
value “spell”.

measure A variety of units (e.g., km, hr, dB, lb, MHz) is
supported; the units may appear immediately
next to a number (e.g., 1cm) or be separated by a
space (e.g., 15 ms); for some units the
singular/plural distinction may not always be
made correctly.

name Interpret a string as a proper name if
possible.

net email, uri “email” can be used for email addresses.

number cardinal, decimal,
digits,fraction,

ordinal,
telephone

Only formats relevant in the target language are
supported. All the format values are supported
as interpret-as values as well, behaving the same
for either syntax.. See the table entries for those
aliases for more details.

ordinal If relevant, see the language-specific User Guide
for a list of the supported formats. Same as
“number” with format “ordinal”.

spell The characters in the contained text string
are pronounced as individual characters.

telephone Supports telephone numbers as commonly
specified in the country corresponding to the
target language. See the language-specific User
Guide for a list of the supported formats.

Use detail="punctuation" to speak punctuation
(e.g. speaking a dash as “dash”). 

time h,hm,hms The hour should be less than 24, minutes and
seconds less than 60; AM/PM is read out only if
explicitly specified. See the language-specific
User Guide for a list of the supported formats.

words This biases the rendering of “word” strings 
towards speaking them as words instead of
pronouncing them as strings of individual letters
and digits. However, the characters of a “word” 
may still be uttered individually for particularly
difficult to pronounce character sequences.
Meant for acronyms to be read as words.



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/175

The “say-as” support varies by language.  But ScanSoft expects to 
continue expanding say-as type coverage for languages over time,
both by expanding existing say-as types to other RealSpeak languages,
and by adding new say-as types. For unsupported say-as types,
RealSpeak merely uses its default text normalization rules. This means
that even though Japanese doesn’t support say-as type “telephone”, 
for example, the output almost always sounds correct anyway since
RealSpeak is very good at identifying and properly speaking phone
numbers in plain text.
The table below lists the supported say-as types for the RealSpeak
languages.  For the “Say-as Type” column, we use a compressed
notation where colons are used to delimit the “interpret-as”, 
“format”, and “detail” values. Right-most empty values and the colon
delimiter are omitted. For example:

acronym = <say-as interpret-as=“acronym”>
currency:dollar = <say-as interpret-as=“currency” format=“dollar”>
acronym::strict = <say-as interpret-as= “acronym” detail=“strict”>

Say-as Type American/British/Australian/
Indian English,

Canadian/Belgian French,
French, German, NA Spanish,

Spanish

Japanese All other
languages

acronym yes
acronym:strict yes
address yes yes yes
cardinal yes yes
currency yes (see language-specific user

guide for list of supported currency
symbols)

currency:dollar yes
currency:peso yes (only by NA Spanish4)
date yes
date:d yes
date:day yes
date:dm yes yes
date:dmy yes yes
date:m yes
date:md yes yes
date:mdy yes yes
date:my yes yes
date:y yes
date:ym yes yes
date:ymd yes yes
digits yes yes



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/176

Say-as Type American/British/Australian/
Indian English,

Canadian/Belgian French,
French, German, NA Spanish,

Spanish

Japanese All other
languages

duration yes
duration:h yes
duration:hm yes
duration:hms yes
duration:m yes
duration:ms yes
duration:s yes
letters yes
letters::strict yes
measure yes
name yes
net:email yes
net:uri yes
number yes
number:cardinal yes yes
number:decimal yes yes
number:digits yes yes
number:fraction yes yes
number:ordinal yes
number:telephone yes
number:telephone:
punctuation

yes

ordinal yes
spell yes yes yes
telephone yes
telephone::
punctuation

yes

time yes yes
time:h yes
time:hm yes yes
time:hms yes yes
words yes

The Lexicon Element

We support loading of SSFT user dictionaries through the SSML
lexicon element. The value for the ‘uri’ attribute must be a valid URI 
to an SSFT user dictionary. The dictionary can be in either one of the
two supported SSFT formats. Be it textual (typically *.dct or *.tdc) or
binary (typically *.dcb *.bdc).

The ‘type’ attribute is optional. Valid values are:
 “application/edct-bin-dictionary"
 “application/edct-text-dictionary"



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/177

When using an HTTP server, remember to add two entries to your
MIME table, thus associating the dictionary extension with the
correct MIME type. (Other approaches may be possible, depending
on the HTTP-server software you’re using) For local file access, the 
following file extensions are correctly mapped, out of the box: ".dct",
".tdc", ".bdc", and ".dcb".
All lexicon elements are parsed, and user dictionaries loaded before
starting Text to Speech conversion. Dictionaries are unloaded when
the last sample buffer is generated, or when the TTS process is
interrupted by some real time event (STOP).
As always, check the SSML documentation for additional detail.

Scansoft SSML Extensions

RealSpeak SSML extensions have an “ssft-” prefix before the name of the 
element/attribute.Thesupported extensions are:

 “ssft-dtype” attribute of <speak>, <p> (paragraph) and <s> 
(sentence) with values “email” or “text” (or “email_”<xxx> 
and “text_”<xxx> for the Chinese languages, see language 
specific user’s guide). With this attribute, the user can toggle
the TTS output behavior between normal text mode and e-
mail specific mode. It has the same effect as the native
markup “<esc>%x” (with x is “text” or “email”).

 “ssft-domaintype” attribute of <speak>, <p> (paragraph) 
and <s> (sentence) (value e.g. “propernames"). With this 
attribute ScanSoft vendor-specific domain types (custom
G2P modules) can be enabled. It has the same effect as the
native markup “<esc>\domain=x\.... <esc>\domain\”.  To 
use this tag, a specific custom G2P needs to be installed. See
“Custom G2P Dictionaries”chapter of this manual for
further explanation.

 The <audio> element supports three extra attributes to
control the internet fetching:

o fetchtimeout: time in to attempt to open and read
the audio document. Use the "s" suffix for seconds,
"ms" suffix for msec; if there is no suffix, "ms" is
assumed. The value must be an unsigned integer.

o maxage: value for the HTTP 1.1 cache-control max-
age directive. This specifies the application is willing
to accept a cached copy of the audio document no
older than this value. A value of 0 may be used to
force re-validating the cached copy with the origin
server. In most cases, this attribute should not be
present, thus allowing the origin server to control
expiration. Use the "s" suffix for seconds, "ms"
suffix for msec; if there is no suffix, "s" is assumed.
The value must be an unsigned integer.



SSML Suport

Chapter IX

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VI/178

o maxstale: value for the HTTP 1.1 cache-Control
max-stale directive. This specifies the client is willing
to accept a cached copy that is expired by up to this
value past the expiration time specified by the origin
server. In most cases, this property should be set to
0 or not present, thus respecting the expiration time
specified by the origin server. Use the "s" suffix for
seconds, "ms" suffix for msec; if there is no suffix,
"s" is assumed. The value must be an unsigned
integer.

API functions

To enable SSML support, set the markup type via TtsSetParam or
TtsSetParams API function:

TtsSetParam(hTtsInst, TTS_MARKUP_TYPE_PARAM ,
MARKUP_4SML);

By default, the markup type is setto “none” which corresponds with 
support for the native markup format.

TtsSetParam(hTtsInst, TTS_MARKUP_TYPE_PARAM ,
MARKUP_NONE);



RealSpeak Telecom
Software Development Kit

Chapter VII
Language Identifier 1.0

Programmer’s Guide



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/180

Language Identifier 1.0

Language Identifier 1.0: Preface

Overview

The Language Identifier (Language ID) software lets you identify the
source language of text strings encoded in the Windows-1252 code
page. To synthesize text that may contain instances of multiple
languages with a Text-To-Speech (TTS) system, you must first
segment the text into the appropriate language and then route it to
the appropriate synthesizer. Similarly, you may want a TTS system to
handle dynamically generated content. Generally, you do not know
the language of dynamically generated content when you compile an
application. In this case, you need to identify the language of the text
and pass this information to your application which then picks the
TTS synthesizer to use.
Accuracy for the Language ID software is nearly 100% for identifying
a single language with even a small sample of 50-100 characters. Even
heavily intermingled text drawn from dozens of languages can be
segmented and identified extremely accurately.

System Requirements

This section covers the requirements for a Language ID software
system.

Size requirements

The sire requirements for the Language ID software are as follows:
 Memory: 32 MB RAM minimum, 64 MB recommended



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/181

OS requirements

The Language ID software runs on the following operating systems:
 Windows 2000/x86
 Windows NT/x86
 Red Hat Linux AS2.1

Software requirements

The only additional software you need is a C compiler to access the
API functions.


NOTES

ScanSoft tests the Language ID software with Microsoft Visual C++
6.0 on Windows and GCC 3.2.3 on Linux.



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/182

Installing the Language ID software

Installing

The language ID software is an integral part of the RealSpeak
Telecom setup. Libraries and include files are installed in the default
library and include directories.



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/183

Using the Language ID software

Overview

The Language ID software is able to classify text as being one (or
none) of a number of languages.
The application may constrain the identifier to choose from a subset
of the installed languages. Call this subset of the installed languages,
the active languages.

Language set

The set of languages used in the language identifier must be set at run
time from a set of 11 supported languages (enumerated below). The
languages selected comprise the set of active languages.
The identifier considers only active languages.



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/184

Available Languages and Codings

For the version 1.0 release, the following set of languages in the
Windows-1252 code page is available:

Language Language
code

Basque BAE

Danish DAD

Dutch DUX

English ENX

French FRX

German GED

Italian ITI

Norvegian NON

Portuguese PTX

Spanish SPX

Swedish SWS



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/185

Language Classification

In its simplest application, language identification takes a sequence of
bytes as input and identifies the single language the sequence is most
likely to be drawn from.

Tuning Classification

You can tune the Language ID classifications based on preferred
languages. The classifier may be configured through the API to prefer
active languages. For instance, a French-Canadian installation may
prefer English and French to the other available languages. When two
languages are given similar scores by the identifier’s algorithm,
and one is preferred and the other is not, the preferred one is
returned. For more information, see “Language Configuration”.



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/186

Language ID API Functions
The Language ID software has its own set of API functions. All
functions have a name starting with “lid” and can be found in the 
header file lid.h. Use these functions to control and access the
Language ID software.

In this section:

 Data Structures reference
 Function reference



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/187

Data structure reference

The header file lid.h contains two main data structures that are part of
the API for the user.

LID_H

This structure describes a handle to a language identifier object.

LID_SCORE_T

This structure describes one active language for the language
identification process. Only the active languages will be taken in
account for the language identification.

Structure

struct LID_SCORE_S {
char szLID[4]
SSFT_U32 value;

};

Members

szLID Language code. This is a 3-letter
string that identifies a language.
Examples are: “ENX” (English), 
“GED” (German). 



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/188

Value Score value returned by the
lid_Idenfity() function call (
initially this value has no meaning):
the lower this value, the likelier
that szLID is the language of the
input text. In particular, the
probability is proportional with
exp(-value/2000)



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/189

lid_ObjOpen()

Syntax:

SSFT_ERROR lid_ObjOpen(
LID_H * phLid;

};

Purpose:

Creates and allocates a new language identifier.

Parameters:

*phLid; Handle to the new language
identifier

Return codes:

SSFT_OK ok
other code Error. An overview of all error

codes can be found in the
header file ssfterror.h.



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/190

lid_ObjClose()

Syntax:

SSFT_ERROR lid_ObjClose(
const LID_H hLid;

};

Purpose:

Removes a language identifier and deallocates all its sources.

Parameters:

hLid; Handle to language identifier

Return codes:

SSFT_OK ok
other code Error. An overview of all error

codes can be found in the
header file ssfterror.h.



Language Identifier 1.0

Chapter VII

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VII/191

lid_Identify()

Syntax:

void lid_Identify(
LID_H hLid,
const char *szText,
LID_SCORE_T **ppScore,
const SSFT_U16 cScore

};

Purpose:

This function identifies the language of the input text (szText) from
the set of active languages in the list of language-score pairs
(ppScore[0..cScore-1]).

Parameters:

hLid; Handle to language identifier
szText The actual input text
ppScore On input, this list of pointers to

language-score pairs defines the
languages that need be
considered. On return the list is
sorted on score from low to high
so that the most probable
language comes first.
see LID_SCORE_T struct for
more info [out]

const SSFT_U16 Number of elements in ppScore.



RealSpeak Telecom
Software Development Kit

Chapter VIII
User Configuration

Programmer’s Guide



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/193

User Configuration
Overview

This chapter describes the different ways in which a user can tune
RealSpeak. It descrribes:

 User Dictionaries
 User Rulesets
 Custom G2P dictionaries
 Custom Voices
 Configuration Files

User Dictionaries

Functional Description

User dictionaries allow the user to specify special pronunciations for
specific words or strings of characters (for example, abbreviations).
Dictionaries work by substituting a string specified by the user (the
“destination string” or “replacement string”) for each occurrence of a
word in the original input text that matchesthe “source string”of a
dictionary entry. Source strings cannot contain white space
characters, so multi-word entries are not supported.
When a dictionary instance is loaded, the TTS looks up each word in
the input text to check if it must be replaced with a destination string
from the dictionary.
The case-sensitiveness of the lookup depends on the use of capital
letters in the dictionary entry.

a) If the source string does not contain capital letters,
the substitution is case-insensitive.
For example when the dictionary contains an entry
for the source string "dll", text input keys such as
"DLL", "dll", "Dll" and "dLL" will all be
substituted.

b) If the source string contains at least one capital
letter, the substitution is case-sensitive.
For example when the dictionary contains an entry
for "DLL", only the text input key "DLL" will
match for that entry.

This is a consequence of the way user dictionaries are used by the
TTS engine. The user dictionary is first consulted for the original
input text key; which means a case-sensitive lookup is performed.
If no match is found, the user dictionary is consulted for the lower
case version of the input text key.
It is allowed to have two dictionary entries with source strings that
only differ in casing. The entry for which the source string contains
capital letters takes precedence when the input text key is an exact
match.



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/194

Suppose the dictionary contains entries for "DLL" and "dll". Then,
only the input text key "DLL" will match for entry "DLL". And keys
like "dll", "Dll", "dLL" will all match for entry "dll".

The“destination string”of a dictionary entry can be orthographic or
phonetic text. Phonetic strings must be presented using the L&H+
phonetic alphabet.

See the language supplement appendix for your specific language for
special user dictionary information.

Dictionary substitution rules

 When the same source string occurs more than once in the
same subheader, the last occurrence will be chosen to pick
the destination string.

 When the same source string occurs in different subheaders
with different content type (one phonetic and one
orthographic), the occurrence in the first subheader will be
chosen to pick the corresponding destination string.

 Only complete words can be matched with; if there’s a 
source string in the dictionary that is a substring of a word in
the input text, there will be no substitution.



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/195

Dictionary Format for RS Host version 4.0

Textual dictionaries must only be encoded in UTF-8 (default) or
UTF-16 (auto-detected by the Scansoft User Dictionary Editor tool)
and the RealSpeak API. Note that UTF-8 encoded dictionaries may
not contain the 3-byte UTF-8 preamble, also known as the UTF-8
BOM or signature.
In general, the dictionary format of textual dictionaries consists of
one [Header] label with its properties and several [SubHeader]-[Data]
label couples with their properties and data.
Each [SubHeader] describes the expected data properties (such as
orthographic or phonetic text) while [Data] describes the actual
source string that needs to be replaced by a destination string.

In its most simple form, a dictionary exists of one [Header] label and
a [Data] label. Although syntactically correct, there are no actions
specified in this dictionary.

The format has been changed compared to version 3.5. The new
format can formally be described as:

dictionary format :=

[Header]
{Language = <language code>}

{([SubHeader]
Content=<content type>
Representation=<representation type>
{Language = <language code>}

[Data]
(<source string><separator><destination string><new
line>)*
)*}
| {[Data]}

language code := ENA|ENG|ENU|DUN|FRC|GED|…
source string := <word>
destination string := (<word> )*
content type := EDCT_CONTENT_ORTHOGRAPHIC |

EDCT_CONTENT_BROAD_NARROWS
representation type := EDCT_REPR_WSZ_STRING |

EDCT_REPR_SZZ_STRING
separator := tab space
new line := return character (enter)
word := any word



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/196

Symbols legend:

symbol meaning

{…} optional part; the part between { and } can be
occur once but is not required to.

example:
Language = <language code>
does not need to be specified

( … )* the part between ( and ) can be occur more
then once

example:
it is possible to have one subheader, multiple
subheaders of no subheaders at all.

<…> the part between < and > specifies a variable
string constant

example:
<language code>
can be any of the available language codes
(ENU, ENA, FRC…).

a|b OR part a is specified OR part b is specified.

example:
as soon as something is specified under [Data],
there has to be a [SubHeader] with its
properties.



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/197

A source string consists of only one word while a destination string
can consists of multiple words. Both have to be separated by a tab
space. When the destination string consists of phonetic symbols, the
string must be preceded by //.

The language string consists of the 3 letter code that identifies a
language. Examples of letter codes are ENA, ENG, ENU, FRC,
FRF, GED, JPJ, MNC, SPM. A table listing the available language
codes can be found inthe “RealSpeak Languages” appendix. The
language string must be specified; this has to be done or as part of the
subheaders or as part of the header (or both). Since TTS doesn’t 
provide support for multiple languages in user dictionaries, the
language string has to be the same in header and subheaders.

The content type defines the type of destination string that should be
expected; use EDCT_CONTENT_ORTHOGRAPHIC to expect
orthographic strings, use EDCT_CONTENT_BROAD_NARROWS
to expect phonetic strings.

The content type determines the representation type; when the
content type is EDCT_CONTENT_ORTHOGRAPHIC, use
EDCT_REPR_WSZ_STRING as representation type. When the
content type is EDCT_CONTENT_BROAD_NARROWS, use
EDCT_REPR_SZZ_STRING as representation type.

When a dictionary is not built according to these formal rules, the
error message TTS_E_UDCT_WRONGTXTDCTFORMAT will be
returned when loading the dictionary. When a dictionary is built
according to these formal rules it is still possible that the expected
result is different or that the error message is returned. It means that
the dictionary file has an invalid format.

Possible errors:

 Textual dictionaries must only be encoded in UTF-8 (default)
or UTF-16 (auto-detected). Note that all characters in the 7-
bit US-ASCII range (hex 20 to7f) are encoded identically
whether UTF-8, US-ASCII or for instance Windows-1252
and ISO-8859-1 are used. So dictionaries which only use
character codes in the ASCII range can be encoded in for
instance Window-1252. If a non US-ASCII character is
present (e.g. ä) and the used encoding is for instance
Windows-1252, then when the dictionary is loaded via the
API an error will be returned and the dictionary will be
ignored. Likewise, when the dictionary file is opened in the
Scansoft User Dictionary Editor tool (see below), a fatal error
will be displayed.

 When as content EDCT_CONTENT_ORTHOGRAPHIC
is specified, the destination strings expected for this
subheader must consist only of orthographic characters.



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/198

When a phonetic string is used, it is interpreted as an
orthographic string and no error is returned.

 When EDCT_CONTENT_BROAD_NARROWS is
specified as content, the destination strings expected for this
subheader must consist only of phonetic characters; an error
is returned when a string is found that isn’t preceded by //.

 When unknown symbols are used in phonetic content, these
are ignored.

 Only one language can be specified; no error is returned but
the dictionary is ignored.

 The specified language has to be installed; no error is
returned but the dictionary is ignored.



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/199

An example dictionary typically looks like this:

[Header]
Language = ENU

[SubHeader]
Content=EDCT_CONTENT_ORTHOGRAPHIC
Representation=EDCT_REPR_WSZ_STRING

[Data]
DLL Dynamic Link Library
Hello Welcome to the demonstration of the American English Text-to-
Speech system.
info Information

[SubHeader]
Content = EDCT_CONTENT_BROAD_NARROWS
Representation = EDCT_REPR_SZZ_STRING

[Data]
addr // '@.dR+Es

Dictionary format for older RealSpeak versions (3.x)

If L&H+ phonetic transcriptions are used, they should be preceded
by a single forward slash and a plus sign (/+).

Dictionaries can be in text format or binary format. They have the
following text format:

 The label [Header] indicates the header section. The content
of the header section is optional but the label is not. If the
section is left blank, the line after the [Header] label must
contain the [Data] label. The header section is made up of a
number of fields, whose format is described later in this
section. The TTS will store a number of predefined header
fields (see the following example). The user can define their
own fields, which will be ignored by the TTS. These fields
must conform to the format described below or the
dictionary will not load.

 The label [Data] indicates the beginning of the data section,
which contains the user dictionary entries. The size of the
dictionary entries is limited to 40 characters (including null
termination) for the source text and to 1024 characters
(including null termination) for the destination text.

Header fields have the format:
Field_name = field_text[newline]



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/200

The Field_name and field_text must be separated by an equal sign. It
does not matter if there are spaces before and after the equal sign.

Dictionary entries have the format:
Target_word[space(s)]replacement_string[newline]

There must be at least one space between the Target_word and the
replacement_string. There can be multiple spaces between them.

The following is the equal sample user dictionary as for version 4.0:

[Header]
Dictionary Name=us_english_sample.dct
Language=American English
Data Type=ANSI
Date=01/16/2003
[Data]

DLL Dynamic Link Library
Hello Welcome to the demonstration of the American English Text-
to-Speech system.
info Information
addr /+'@.dR+Es

Migration from 3.x to 4.0 format

The following rules have to be kept in mind when converting an old
3.x dictionary to the 4.0 dictionary format:

 Remove [Header] properties Data, Date and Dictionary
Name.

 Change the language name to the language code (by example,
‘American English’ to ENU).

 Split the [Data] section in two sections (one for phonetic and
one for orthographic destination string).

 Provide a subheader for each category, with the subheader
properties (content and representation).

 Replace the /+ sequence by // for all phonetic destination
strings.

There are three possible scenarios for conversion:
1. The dictionary only contains orthographic entries
2. The dictionary only contains phonetic entries
3. The dictionary contains both

To demonstrate these scenarios using the rules described above, three
examples are shown for each conversion:

Case 1: Orthography only



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/201

The new dictionary should look like this:

[Header]
Language = ENU

[SubHeader]
Content=EDCT_CONTENT_ORTHOGRAPHIC
Representation=EDCT_REPR_WSZ_STRING

[Data]
DLL Dynamic Link Library
Hello Welcome to the demonstration of the American English Text-
to-Speech system.
info Information

Case 2: phonetics only

[Header]
Language = ENU

[SubHeader]
Content = EDCT_CONTENT_BROAD_NARROWS
Representation = EDCT_REPR_SZZ_STRING

[Data]
addr // '@.dR+Es

Case 3: both orthography and phonetic

[Header]
Language = ENU

[SubHeader]
Content=EDCT_CONTENT_ORTHOGRAPHIC
Representation=EDCT_REPR_WSZ_STRING

[Data]
DLL Dynamic Link Library
Hello Welcome to the demonstration of the American English Text-
to-Speech system.
info Information

[SubHeader]
Content = EDCT_CONTENT_BROAD_NARROWS
Representation = EDCT_REPR_SZZ_STRING



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/202

[Data]
addr // '@.dR+Es

User Dictionary API calls

From a developer’s point of view, a distinction has to be made 
between the term ‘dictionary’ and ‘dictionary instance’. A ‘dictionary’ 
is the actual file and its content, while a ‘dictionary instance’ is the 
loaded version of a dictionary into memory. A ‘handle to a dictionary 
instance’ points to a loaded version. A dictionary instance is always
linked to one particular TTS engine instance, but one TTS engine
instance can be linked to multiple dictionary instances. In the
remaining text, the content should make clear whether ‘dictionaries’ 
or ‘dictionary instances’ are being discussed.

For version 4.0, a lot of new dictionary functionality has been created.
It is now possible to use more than one dictionary instance
simultaneously. Moreover, a priority mechanism is foreseen to
determine the order in which dictionaries will be called to perform a
lookup.

First, a dictionary instance has to be loaded by calling
TtsLoadUsrDictEx. This implicitly also enables a dictionary instance
for use, with default priority. All loaded dictionaries thus have the
same initial priority. In this case, the order of loading determines the
priority

To change priority, a call to TtsEnableUsrDictEx has to be made.
Remark that the dictionary instance has to be disabled first by calling
TtsDisableUsrDictEx. TtsDisableUsrDictEx can also be used to
simply disable (exclude) the dictionary for a lookup. Disabling is not
the same as unloading; disabling means that the dictionary instance
remains in memory and waits for being enabled again, while
unloading a dictionary instance means that the dictionary instance is
actually removed from memory.

A typical sequence of dictionary API calls may look like:

…
HTTSINSTANCE hInstance;
TtsInitializeEx (&hInstance, pServer, &paramList[0], &instanceData)
…
DictionaryData dictData1;
HTTSDCTEG hDctEg1;
memset(&dictData1,0,sizeof(DictionaryData));
dictData1.uri = "c:\\us_english1.dct";

DictionaryData dictData2;
HTTSDCTEG hDctEg2;
memset(&dictData2,0,sizeof(DictionaryData));



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/203

dictData2.uri = "c:\\us_english2.dct";

TtsLoadUsrDictEx( hInstance,&dictData1,&hDctEg1));
// dictionary 1 is loaded and enabled with
// default priority

TtsProcessEx(hInstance,pSpeakData);
// dictionary 1 is used for lookup

TtsLoadUsrDictEx( hInstance,&dictData1,&hDctEg2));

TtsProcessEx(hInstance,pSpeakData);
// dictionary 2 is looked up, if no entry
// found dictionary 1 is used for lookup

TtsDisableUsrDictEx( hInstance,hDctEg1);
TtsEnableUsrDictEx( hInstance,hDctEg1,0xF));
// priority change of dictionary 1

TtsProcessEx(hInstance,pSpeakData);
// dictionary 1 is looked up, if no entry
// found dictionary 2 is used for lookup

TtsUnloadUsrDictEx( hInstance,hDctEg1);

TtsProcessEx(hInstance,pSpeakData);
// dictionary 2 is used for lookup
TtsUnloadUsrDictEx( hInstance,hDctEg2);

TtsProcessEx(hInstance,pSpeakData);
// no dictionaries used

Restrictions on user dictionaries

The following restrictions apply to user dictionaries:

 User dictionary lookup will not be performed when the TTS
channel is processing in "word by word" mode (enabled by
the escape sequence <ESC>M1)

 You cannot call dictionary functions on a TTS engine
instance that is in the state of processing.

Automated User dictionary Loading

User dictionaries can be loaded automatically when a TTS instance is
created or the language and/or voice is switched by specifying them
in the Server configuration file. Note that this only applies to systems
using the Client/Server mode.



User Dictionaries

Chapter VI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/204

See the “Configuration Parameters –default_dictionaries” section in 
the“Configuration Files”section of the “User Configuration” 
chapter for more details.

User Dictionary Editor (Windows only)

The Telecom RealSpeak/Host SDK comes with the Scansoft User
Dictionary Editor (UDE), which serves as a GUI for creating and
editing of user dictionaries. It is installed automatically. Please check
out the help documentation that comes with the UDE for detailed
instructions. The UDE help file is available via the RealSpeak 4.0
Program group under the Windows Start Menu or directly as
“.\speech\components\common\rsude.chm" under the RealSpeak
installation directory.



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/205

User Rulesets

Introduction

Rulesets allow the user to specify "search-and-replace" rules for
certain strings in the TTS "input text". Whereas user dictionaries only
support search and replace functionality for literal strings that are
complete words, rulesets support any search pattern that can be
expressed using regular expressions (e.g. multiple words, part of a
word).
The rulesets are applied before any other text normalization is
performed, including user dictionary lookup.
The details of how the text normalization can be tuned via user
rulesets are described in the next section.
A ruleset is basically a collection of rules; each rule specifies a “search 
pattern” and the corresponding “replacement spec”. 
The syntax and semantics of the “search pattern” and the 
“replacement spec” match those of the regular expression library that 
is used, being PCRE v5.0 which corresponds with the syntax and
semantics of Perl 5. For the Perl 5 regular expression syntax, please
refer to the Perl regular expressions main page at
http://perldoc.perl.org/perlre.html. For a description of PCRE, a
free regular expression library, see http://www.pcre.org/.
More details on the syntax are described in the “Ruleset format” 
section.
Rulesets can be loaded for a certain TTS instance via the SetParam(s)
API function or they can be loaded automatically when a TTS
instance is created by specifying them in the Server configuration file.
The rules of a loaded ruleset are applied only when the active
language matches the language that is specified in the header section
of the ruleset.
Several rulesets can be active simultaneously for the same language;
the most recently loaded ruleset is applied first (it has the highest
priority).

Tuning of text normalization via rulesets

 The Regular Expression Text-To-Text (RETTT) engine instance
applies the rules of the rulesets. It is an optional subcomponent of
a Text-To-Text engine instance.

 The rulesets are applied before any other text normalization is
performed, including user dictionary lookup. The only
transformations on the TTS input text that can occur before the
RETTT processing are the transcoding (because the character set
does not match the native character set; this is explained in more
details in the “Ruleset format” section) and the translation of SSML
markup into native RealSpeak markup. So if SSML markup has



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/206

been used, it will already be transformed into the native RealSpeak
markup format.

 If the TTS input is provided via the user call-back mechanism, it is
first collected entirely, before the rules are applied. The first rule of
the most recently loaded active ruleset is applied first to the
complete input text. Then, regardless of the effect of this rule, the
second rule is applied; and so on. The rewriting stops when the last
rule of the first loaded ruleset has been applied. In fact it's possible
that a later rule changes an input string that was already
transformed by a previous rule.

Ruleset format

In general, a ruleset consists of a header section, followed by a data
section. The format of a ruleset is described formally below using the
same notation as for user dictionaries (see “Symbols Legend” table in 
the “User Dictionary” section). 
A ruleset can be formally described as:
ruleset :=

(<comment-line>|<blank-line>)*
<header-section>
<data-section>?

Comment lines have the '#' character as the first non-blank character.
A blank line is a line consisting entirely of linear whitespace
characters. Using regular expression syntax they can be expressed as:

comment-line :=
^\s*#.*\n

blank-line :=
^\s*\n

Header Section

The "header" section contains one or more key definitions (the
definition of the "language" key is required, see further); each
definition can span one line only.
header-section :=

"[header]"\n
(<comment-line>|<blank-line>|
<key-definition>)+

Comment lines and blank lines can be inserted everywhere.
Key definitions have the following syntax:
key-definition :=

<key-name> = <key-value><comment>?\n

Blanks (spaces or tabs) before and after the equal sign are optional.
If the key value contains blanks, it must be enclosed in double quotes.
If a double quote is needed as part of the value, it needs to be escaped



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/207

(\"). The actual syntax of the <key-value> depends on the <key-
name>.
A <comment> can follow the <key-value>, it lasts until the end of
the line.
comment :=

#.*$

The only currently supported key names are:  “language” and 
“charset”. This means that <key-definition>
can be expressed semantically as:
key-definition :=

<language-definition>|<charset-definition>

The <language-definition> is required for each header, the value is
the 3-letter TTS language code which is also used to specify the
language of user dictionaries, see the table inthe “RealSpeak 
Languages” for the list of available language codes.

language-definition :=
language = <language-code><comment>?\n

language-code := ENA|ENG|ENU|DUN|FRC|GED|…

The <charset-definition> is optional and specifies the character set
used for the encoding of the rules. Currently the character set must
match the native character set for the language specified in the
<language-definition>. See the table inthe “RealSpeak Languages”
appendix for a list of the native character set for each language.
charset-definition :=

charset = <charset id> <comment>? \n

charset id :=
"windows-1252"|"windows-1251"|
"windows-932"|...

D a t a S ec t i on

The "data" section contains zero or more "rules", a rule can occupy
one line only.
data-section :=

"[data]"\n
(<comment-line>|<blank-line>|<rule>)*

Comments can also be inserted at the end of a rule and start with a '#'
character and span till the end of the line.
A rule has the following syntax:
rule :=

<search-spec> "-->" <replacement-spec> <comment>? \n



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/208

The syntax and semantics of the <search-spec> and the
<replacement-spec> matches the one of the used Regular expression
library, being PCRE v5.0, this corresponds with the syntax and
semantics of Perl 5. For Perl 5 regular expression syntax, please refer
to the Perl regular expressions man page at
http://perldoc.perl.org/perlre.html. For a description of PCRE, a
free regular expression library, see http://www.pcre.org/.
For a detailed description, see the "pcrepattern.html" document in the
PCRE distribution package.
If markup is being used (in the source and/or replacement pattern), it
must be in the native RealSpeak markup format.
Note that special characters and characters with a special meaning
need to be escaped.
Some examples are:

 In the search pattern: non-alphanumerical characters with a
special meaning like dot(.), asterisk (*), dollar ($), backslash
(\) and so on, need to be preceded with a backslash when
used literally in a context where they can have a special
meaning (e.g. use \* for *). In the replacement spec this
applies to characters like dollar ($), backslash (\) and double
quote (").

 Control characters like \t (Tab), \n (Newline), \r (Return),
etc.

 Character codes: \xhh (hh is the hexadecimal character code,
e.g. \x1b for Escape), \ooo (ooo is the octal notation, e.g.
\033 for Escape).

 Perl5 also predefines some patterns like “\s” (whitespace) 
and “\d” (numeric).

For a full description please refer to the Perl5 man pages.

Rule example

/David/ --> "Guru of the month May"
Replaces each occurrence of the string "David" by "Guru of
the month May".

Search-spec

In general the format of the search-spec is:
Search-spec :=

<delimiter> <regular-expression> <delimiter> <modifier>*

<delimiter> is usually '/', but can be any non-whitespace character
except for digits, back-slash ('\') and '#'... This facilitates the
specification of a regular expression that contains '/', because it
eliminates the need to escape the '/'.

<modifier> := [imsx]

optional modifiers:



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/209

 i (search is case-insensitive);
 m (let '^' and '$' match even at embedded newline

characters);
 s (let the '.' pattern match even at embedded newline

characters, by default '.' matches any arbitrary character,
except for a newline);

 x (allows for regular expression extensions like inserting
whitespace and comments in <regular-expression>).

Replacement-spec

The format of the replacement spec is a quoted ("…") string or a 
non-blank string in case the translation is a single word. It may
contain back references of the form $n (n: 1, 2, 3, ...) which refer to
the actual match for the n-th capturing subpattern in <search-spec>.
E.g. $1 denotes the first submatch. A back reference with a number
exceeding the total number of submatches in <search-spec>, is
translated into an empty string. A literal dollar sign ($) must be
escaped (\$).
Everything following <replacement-spec> and on the same line is
considered as comment when starting with '#', else it is just ignored.

Some examples of rules

/<SSFT>/ --> "Scansoft"
Rewrites "<SSFT>" into "Scansoft".

/(Quack)/ --> ($1)
Replaces "Quack" by "(Quack)".

/(Quack)/ --> ($2)
Replaces "Quack" by "()".

/help me/ --> "\x1b\\vol=95\\help me\x1b\\vol=80\\"
Demonstrates the insertion of native markup (volume tag).
Rewrites for instance "Please, help me!" into
"Please, <Esc>\vol=95\help me<Esc>\vol=80\!".

/(\s):-\)(\s)/ --> "$1ha ha$2"
Where "\s" matches any whitespace character,
$1 corresponds with the matched leading whitespace character
and $2 corresponds with the matched trailing whitespace
character. This rule rewrites for instance " :-) " into " ha ha ".

/(\r?\n)-{3,} *Begin included message *-{3,}(\r?\n)/ --> "$1Start
of included message:$2"

Rewrites for instance
---- Begin included message ----

into
Start of included message:

/\x80 ?(\d+)\.(\d{2})\d*/ --> "$1 euro $2 cents"
Rewrites for instance "€9.751" into "9 euro 75 cents".



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/210

Restrictions on rulesets

The following restrictions apply to rulesets:

 TTS Markers generated while rulesets are loaded have
dummy values (0) for the source position field, because the
source positions are only determined after the rulesets have
been applied.

 You cannot load or unload rulesets on a TTS engine instance
that is in the state of processing.

Effect of rulesets on the TTS performance

The loading of rulesets can effect the performance of the TTS
process (Process() and ProcessEx() API function).
An important note is that certain items that may appear in regular
expression patterns are more efficient than others.
E.g. a character class (e.g. "[aeiou]") is more efficient than the
equivalent set of alternatives (e.g. "(a|e|i|o|u)").
See the "pcreperform.html" main page of the PCRE package for
more details.

Ruleset API functions

Rulesets can be loaded and unloaded via the TtsSetParam and
TtsSetParams API functions. The TTS_RULESET_LOAD_PARAM
parameter allows the loading and enabling of the specified ruleset.
Multiple rulesets can be loaded by specifying multiple
TTS_RULESET_LOAD_PARAM parameters in one or more
TtsSetParam(s) calls.
The most recently loaded ruleset is applied first (so has the highest
priority).
If multiple rulesets are specified for one TtsSetParams call then the
ones with higher indices in the parameter array argument are loaded
last. If an already loaded ruleset is specified, the old copy is first
unloaded.
TtsSetParams with TTS_RULESET_UNLOAD_PARAM parameter
will unload the specified ruleset.
The information regarding the ruleset is specified via a structure of
type TTS_FETCHINFO_T, whose address is stored in the “pObj” 
field of the parameter value structure (of type
TTS_PARAM_VALUE_T).
Note that the TtsSetParams call to "unload" a ruleset should provide
the same info as the corresponding "load" call. This is especially
needed when a relative URI or path was specified and the
SPIINET_URL_BASE
property was set.



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/211

See the section “Defined Data Types” in the “RealSpeak API” 
chapter for a description of the TTS_FETCHINFO_T structure type.

Sample code

A typical sequence of ruleset API calls may look like:

…
HTTSINSTANCE hInstance;
TTS_PARAM_T aParamList[1];
TTS_FETCHINFO_T ttsFetchInfo;

TtsInitializeEx (&hInstance, pServer, &Parm, &instanceData)
…

aParamList[0].nParam =
TTS_RULESET_LOAD_PARAM;

ttsFetchInfo.szUri = "c:\\us_english.trs";
ttsFetchInfo.szContentType =

"application/x-realspeak-rettt+text";
ttsFetchInfo.hFetchProperties = NULL;
aParamList[0].paramValue.pObj =

&ttsFetchInfo;

TtsSetParams(hInstance, aParamList, 1);

TtsProcessEx(hInstance,pSpeakData);
/* ruleset “us_english.trs” is applied */

aParamList[0].nParam =
TTS_RULESET_UNLOAD_PARAM;

aParamList[0].paramValue.pObj =
&ttsFetchInfo;

TtsSetParams(hInstance, aParamList, 1);



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/212

Automated ruleset loading

Rulesets can be loaded automatically when a TTS instance is created
by specifying them in the Server configuration file. Note that this
only applies to systems using the Client/Server mode.
See the “Configuration Parameters – default_rulesets” section in the 
"Configuration Files"section in the “User Configuration” chapter for
more details.



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/213

Custom G2P Dictionaries
Nuance's RealSpeak system now offers support for custom G2P
dictionaries. A custom G2P dictionary module is an add-on module
specifically designed to improve the quality of pronunciation for
certain kinds of words (for example, proper names).
Check the language specific manuals for a list of the currently
available custom G2P dictionaries. Check with Nuance for the
availability of other custom G2P dictionary modules.

One or more custom G2P dictionary modules can be loaded into
memory using the API function TtsLoadG2PdictList and unloaded
from memory using TtsUnloadG2PdictList.
A custom G2P dictionary module that has been loaded is dynamically
enabled/disabled by using the 4SML ‘ssft-domaintype’ attribute (a 
proprietary extension to SSML) or the native <esc>\domain\ tag.
Refer to the “SSML Support” chapter and the language specific
documentation for details.



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/214

Custom Voices
ScanSoft's RealSpeak system now offers support for custom voices.
Scansoft develops a custom voice at the request of a specific
customer, possibly using voice talent contracted by the customer. As
part of this process the custom voice font will be given a name that
will uniquely identify it for the customer. Each custom voice will go
with a specific language (for example, American English).

A custom voice can be selected in the same way as a standard voice,
except that when using the TTSPARAM structure, the voice must
always be identified via a string, not a number.
RealSpeak allows the selection of a voice in three different ways:

 When the engine instance is initialized. by setting the
appropriate values in the TTSPARAM structure, as follows:

o Set nVoice to TTS_VOICE_USE_STRING
o Set szVoiceString to string specifying name of the

voice to use. The voice name is defined by the
customer (see above).

Example:
Parm.nVoice = TTS_VOICE_USE_STRING;
szVoiceString = “Elizabeth”; 

 Using the TtsSetParam(s) function, providing the instance is
not busy executing the TtsProcess(Ex) function in another
thread.

 Using markup: the SSML <voice> element and voice
attribute, the SAPI5 voice tag or the native <esc>\voice\
tag.



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/215

Configuration Files
The TTS Server is configured using a XML configuration file, by
default “config/ttsserver.xml” within the RealSpeak Telecom
installation directory, but this can be changed by specifying one or
more -c options (configuration file options) when starting the TTS
Server.
Note that when operating RealSpeak in in-process mode, the server
configuration file is not used at all (except when using the SAPI5
interface).

If more then one -c option is specified, the configuration parameters
in each configuration file override those specified by earlier -c
options. This can be used to create OEM or site-specific
configuration files that inherit the ScanSoft provided defaults but
override a few parameters. This should be done by copying over
ttsserver.xml, removing all the parameters except the ones that need
to be customized, then customizing those parameter values.

Configuration file format
Within each configuration file, each configuration parameter is
specified by one or more XML elements, with the value of the
parameter contained within that element.

Here is a sample configuration file followed by a description of the
elements and attributes:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl"
href="ttsserver.xsl"?>

<ttsserver version="4.0.0"
xmlns="http://www.scansoft.com/rsh40/ttsserver">

<network_service> </network_service>
<network_port> 6666 </network_port>

</ttsserver>

The sample configuration file consists of the following parts:

 XML declaration:

<?xml version="1.0" encoding="ISO-8859-1"?>

 Style sheet declaration for viewing the file in a Web browser
(optional):



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/216

<?xml-stylesheet type="text/xsl"
href="ttsserver.xsl"?>

 The root element of the document (as specified in the
document type declaration), i.e., the container element for
parameter elements:

<ttsserver version="4.0.0"
xmlns="http://www.scansoft.com/rsh40/

ttsserver">

 One or more elements which are parameters, such as:

<network_service> </network_service>
<network_port> 6666 </network_port>



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/217

Configuration parameters
Not all parameters need to be set; some are optional with the TTS
server automatically detecting the appropriate value for that
installation.

Single value parameters

The following parameter names are specified as an element name.

Environment Variable Overrides

Element Description Default Optional

<SSFTTTSSDK> Installation directory optional
parameter, by
default auto-
detected

yes

<TMPDIR> Temporary files directory optional
parameter, by
default auto-
detected

yes

<USER> User ID optional
parameter, by
default auto-
detected

yes

Network Parameters

Elements Description Default Optional

<network_service> TCP/IP service name, if empty
network_port is used

<network_port> TCP/IP port number 6666
<network_accept_backlog> TCP/IP backlog for accepting

connections
20

<network_client_limit> Maximum number of
connections before refusing
clients

1000



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/218

Elements Description Default Optional

<network_reuse_addr> Whether to allow the server to
listen for connections on an
already active TCP/IP port. By
default, false, as doing so
exposes a well-known security
flaw where other processes could
hijack the port afterwards. Only
switch the value to true if
directed by ScanSoft Technical
Support to workaround OS
problems with releasing the
TCP/IP port on shutdown.

false

<network_interface> Network interfaces to listen for
connections upon. By default,
the server listens for connections
on all network interfaces.
Uncomment and set this to
enhance security in cases where
the server should only accept
clients from the same host (use a
value of 127.0.0.1), or where the
server should only accept clients
from a single trusted network
interface (use the TCP/IP
address for that interface). This
parameter is optional.

all interfaces yes

<network_timeout> Network timeout, in seconds, for
the client/server connection.
The worst-case for detecting a
lost connection is 2 times this
value.

60

Licensing Parameters

Elements Description Default

<license_mode> Licensing mode, default or explicit default
<license_servers> See Multiple Value Parameters 27000@localho

st



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/219

Speak Parameters

Elements Description Default

<default_rate> Default speaking rate on the RealSpeak
rate scale of 1 - 100. This value is
overridden if the rate is set via the
RealSpeak API or markup, and has no
effect for SAPI where SAPI always
specifies its own default rate.

50

<default_volume> Default volume level on the RealSpeak
volume scale of 0 - 100. This value is
overridden if the volume is set via the
RealSpeak API or markup, and has no
effect for SAPI where SAPI always
specifies its own default volume.

80

Miscellaneous Server Parameters

Elements Description Default

<default_dictionaries> See Multiple Value Parameters
<default_rulesets> See Multiple Value Parameters
<dictionary_default_path> Default path for user dictionaries.
<run_in_background> Run in the background versus as an

interactive process.
false

<produce_core_files> Whether to produce core files on
crashes for UNIX variants.

true

Internet Fetch Cache Parameters

Elements Description Default

<cache_directory> Directory name for the disk
cache. If relative, the file path
is relative to the containing
configuration file.

${TMPDIR}/t
tsserver_cache_
${USER}

<cache_total_size> Maximum size of the disk
cache in MB

200

<cache_entry_max_size> Maximum size of a single disk
cache entry in MB

20

<cache_entry_exp_time> Time when an unused disk
cache entry gets purged, in
seconds

3600

<cache_low_watermark> When maximum cache size is
reached, what the cache size
must be reduced to, in MB

180

<cache_unlock_entries_at_startup> Reserved for future use, leave
unchanged

true



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/220

Internet Fetch Parameters

Elements Description Default

<inet_proxy_server> Address a http proxy server to use, e.g.
127.0.0.1

no proxy is used
(empty value)

<inet_proxy_server_port> Port of the http proxy server to use, e.g.
8080, ignored unless inet_proxy_server
is non-empty

8080

<inet_user_agent> User agent name in HTTP/1.1 headers RealSpeak
Host/4.0

<inet_accept_cookies> Whether to accept HTTP cookies (true
or false)

true

<inet_extension_rules> See Multiple Value Parameters



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/221

Diagnostic and Error Logging Parameters

Elements Description Default

<log_file_enabled> Whether to log errors and diagnostics
(true or false)

true

<log_file_base_name> Error and diagnostic log file base
name. This will have "1.xml"and
"2.xml" appended for the initial and
roll-over log file names. If relative, the
file path is relative to the containing
configuration file. If empty, messages
will go to standard output.

${TMPDIR}/tt
sserver_log_
${USER}_

<log_file_max_size> Log file maximum size, in MB 50
<log_level> Diagnostic log level, by default 0,

where 0 enables errors, 1 enables errors
and warnings, and higher levels enable
diagnostic messages (which may greatly
impact performance).

0

Multiple Value parameters

The following parameters can have multiple values, and are specified
as a combination of nested elements.

inet_extension_rules

Rules for mapping file name extensions to MIME content types,
specified as a sequence of <extension> elements where the name attribute is
the extension and the value is the MIME content type.

For example, these are the RealSpeak defaults:

<inet_extension_rules>
<extension name=".alaw"> audio/x-alaw-basic </extension>
<extension name=".ulaw"> audio/basic </extension>
<extension name=".wav"> audio/x-wav </extension>
<extension name=".L16"> audio/L16;rate=8000 </extension>
<extension name=".txt"> text/plain </extension>
<extension name=".xml"> text/xml </extension>
<extension name=".ssml" >application/ssml+xml </extension>
<extension name=".bdc"> application/edct-bin-dictionary </extension>
<extension name=".dct"> application/edct-text-dictionary </extension>
<extension name=".tdc"> application/edct-text-dictionary </extension>

</inet_extension_rules>

default_dictionaries

List of default dictionaries to load, where each matching dictionary is
loaded when each port is opened. Language and priority attributes are
required, and a voice attribute is optional (if not specified, the
dictionary is loaded for all voices for that language). The value is the



Custom G2P Dictionaries

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter VIII/222

dictionary path or URI. This is an optional parameter, by default
empty.

For example, the following would load american_english.bdc for all
American English voices, that dictionary as well as jill.bdc for the
American English Jill voice, and no default dictionaries for any other
language.

<default_dictionaries>
<dictionary language="American English" priority="1000">

http://myserver/american_english.bdc
</dictionary>
<dictionary language="American English" voice="Jill"
priority="1001">
http://myserver/jill.bdc

</dictionary>
</default_dictionaries>

default_rulesets

List of default rulesets to load, where each matching ruleset is loaded
when each port is opened. This element is optional; by default no
rulesets are loaded. A default ruleset is specified via a <ruleset>
element.  The “language” attribute is required, the “content-type” and 
“voice” attributes are optional.  The default value for the content-type
is "application/x-realspeak-rettt+text".
If the voice attribute is not specified, the ruleset is loaded for all
voices for that language. The value is the ruleset path or URI.

For example, the following would load american_english.trs for all
American English voices, that ruleset as well as david.trs for the
American English David voice, and no default rulesets for any other
language.

<default_rulesets>
<ruleset language="American English">

http:// myserver/american_english.trs
</ruleset>
<ruleset language="American English" voice="David">

http://myserver/david.trs
</ruleset>

</default_rulesets>

license_servers

RealSpeak license server TCP/IP addresses, where at least one license
server must be defined, and multiple values are used to configure
redundant license servers for fail-over support. See the RealSpeak
Licensing Handbook for details on license server configurations and
considerations, as well as detailed information on using this parameter
properly.

For example, this is the RealSpeak default:

<license_servers>
<server>27000@localhost</server>

</license_servers>



RealSpeak Telecom
Software Development Kit

Chapter IX
RealSpeak Email Pre-Processor

Programmer’s Guide



Speechify API

Appendix L

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IX/224

RealSpeak E-mail Preprocessor
Introduction

The ScanSoft e-mail preprocessor (EMPP) has been developed to
analyze a specific type of text: e-mail messages. E-mail messages
differ from any average type of text in both structure and contents.

An e-mail message consists of two clearly distinguished parts: the
header and the body. A substantial part of the header contains routing
and administrative information, which is irrelevant to the user. Both
the header and the body contain all kinds of e-mail specific text
features, e.g. e-mail addresses, emoticons such as smileys, etc.
Furthermore, informal writing is often combined with a lack of
grammatical conventions. Spelling rules are frequently violated,
punctuation is often omitted, etc.

Although the standard ScanSoft Text-To-Speech system can handle
special text items (abbreviations, numbers, dates, etc.), it is not
capable of correctly handling all e-mail specific text features. These
text features are therefore dealt with by the e-mail preprocessor. The
EMPP transforms e-mail specific information into a format that
complies with the rules of the standard ScanSoft Text-To-Speech
system. The EMPP is a plug-in preprocessing module of the ScanSoft
Text-To-Speech system. It replaces the preprocessor of the standard
Text-To-Speech system.

In the following sections you will find a description of the
functioning of the ScanSoft e-mail preprocessor as well as an
overview of its features.

The e-mail preprocessor has two main tasks: processing of the e-mail
header and processing of the body of the e-mail message.

The input to the EMPP consists of one or more e-mail messages. In
order to process the e-mail header, the EMPP extracts relevant
header fields and then provides an intelligent header field reading.



Speechify API

Appendix L

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IX/225

During the processing of the e-mail body, the text is divided into
smaller text units, called text-to-speech messages, which are
synthesized by the Text-To-Speech system. Text normalization is
applied to e-mail specific text features such as e-mail addresses,
proper names, emoticons, URLs (Universal Resource Locators), etc.
For the text normalization of an e-mail message, the ScanSoft EMPP
applies linguistic rules and performs dictionary look-up, in order to
yield an adequate phonetic transcription. The EMPP also supports
the ScanSoft user dictionary mechanism, which allows the user to
customize the output of the e-mail processing.

E-Mail Header Processing
Header Field Extraction

An e-mail message consists of two clearly distinguished parts: the
header and the body. The EMPP detects the header and extracts the
relevant header fields. Information that is of no interest to the user
(such as routing information) is not retained.
The EMPP extracts the following header fields:

From Field Contains the sender’s name and/or address

Date Field Contains the date and time of sending

Subject Field Optionally contains the subject of the e-mail

The extraction of the header fields is based on the detection of
specific keywords in the e-mail header. The supported keywords for
the extraction of the header fields are language specific and are listed
in the “E-mail Preprocessor” chapter of the language-specific
manuals. Some examples of keywords are listed below. Note that the
keywords do not necessarily have to be presented in the same
language as the body of the e-mail.

From Field From:
Author:
Sender:
De:
Von:

Date Field Date:
Enviado:
Gesendet:

Subject Field: Subject:
Subj:
Asunto:



Speechify API

Appendix L

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IX/226

Betreff:

The following is an example of header field extraction. The original
header holds information that is irrelevant to the user. After
extraction of date, sender and subject, the processed header merely
mentions the Date field, the From field and the Subject field:

Original header:

From owner-techlink@eva.dc.LSOFT.COM Wed Jan 31 07:04:47 1996
Return-Path: <owner-techlink@eva.dc.LSOFT.COM>
Received: from lhs1.lhs.be by mars.lhs.be (4.1/SMI-4.1)

id AA03971; Wed, 31 Jan 96 07:04:44 +0100
Received: (from uucp@localhost) by lhs1.lhs.be (8.6.11/8.6.11) id
HAA08429; Wed, 31 Jan 1996 07:02:54 +0100
Received: from smtpgate.cmp.com ([198.80.26.6]) by keystone.cmp.com
with ESMTP

(1.37.109.14/17.1) id AA029325060; Tue, 30 Jan 1996 18:37:40 –
0500
X-Mailer: Microsoft Mail via PostalUnion/SMTP for Windows NT
Approved-By: TechWeb <techweb@CMP.COM>
Message-Id: <1996Jan30.181300.1151.634035@smtpgate.cmp.com>
Date: 30 Jan 96 18:40:28 –0500
Reply-To: TECHLINK-REQUEST@eva.dc.LSOFT.COM
From: TechWeb <techweb@cmp.com>
Organization: CMP Publications, Inc.
Subject: TechWeb's TechLink newsletter; January 3
To: Multiple recipients of list TECHLINK

<TECHLINK@eva.dc.LSOFT.COM>
Status: R

Extracted header fields:

Date: 30 Jan 96 18:40:28 –0500
From: TechWeb <techweb@cmp.com>
Subject: TechWeb's TechLink newsletter; January 3

Header Field Reading

After the header fields have been extracted, they are processed by the
EMPP. The header field keywords (see above) are replaced by an
introductory message. The remainder of the header fields is processed
by the EMPP in order to allow the Text-To-Speech system to
intelligently read the fields.  See the “E-mail Preprocessor” chapter of 
the language-specific manuals for the details.



Speechify API

Appendix L

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IX/227

E-Mail body processing
Message Extraction

The e-mail preprocessor splits the body of the e-mail message into
text-to-speech messages. This is done on the basis of a number of
criteria, such as punctuation, capitalization, layout, intelligent
abbreviation handling, etc.
See the “E-mail Preprocessor” chapter of the language-specific
manuals for the details.

Text Normalization

An e-mail message typically contains e-mail specific text features, such
as e-mail addresses, URLs, file names, emoticons, etc. The EMPP
transforms these e-mail specific features into a format that complies
with the rules of the standard text normalization of the ScanSoft
Text-To-Speech system.
Refer to the “E-mail Preprocessor” chapter of the language-specific
manuals for the details.

Customizing the E-Mail Preprocessor
The e-mail preprocessor supports the standard ScanSoft Text-
To-Speech SDK user dictionary mechanism, which allows the user to
customize the output of the e-mail preprocessor. The user dictionary
is consulted both during the header processing and the body
processing.
For the details of customization of the reading of the e-mail header
and body, refer to the “E-mail Preprocessor” chapter of the language-
specific manuals for the details.
For more information on how to build and use user dictionaries, see
the User Dictionariessection of the “User Configuration” chapter.

Support for markup in E-mail mode
The e-mail preprocessor can, in general, be activated via markup of
the input text using the native <ESC>%email tag or via the setting of
the “ssft-dtype” (document type) attributeto “email” for the
<speak>, <paragraph> or <sentence> element in SSML mode. For
Mandarin Chinese and Cantonese the document type should be set to
email_xxx where xxx is win950 or win936 (Mandarin only) depending
on the desired native character set (see also the language specific
user’s guides). Note that the e-mail preprocessor can also be activated
via the API.



Speechify API

Appendix L

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IX/228

Most tags supported in standard text mode are also supported in e-
mail mode apart from the few exceptions listed below.

Native markup

 No support for any of the <ESC>\tn=x\ text normalization
(TN) tags except for <ESC>\tn=spell\ and
<ESC>\tn=normal\. Markup for the other TN types is
simply ignored.

 No support for <ESC>M1 (word-by-word read mode) and
<ESC>M3 (line-by-line read mode)

SSMLmarkup

 No support for <say-as> tags except for <say-as interpret-
as=”spell”> and <say-as type=”spell-out”>.  Markup for the 
other say-as types is simply ignored.

E-mail Preprocessor API functions
The e-mail preprocessor can be activated via the TtsSetParam and
TtsSetParams API functions by setting the
TTS_DOCUMENT_TYPE_PARAM parameter to DOC_EMAIL.
To disable the E-mail preprocessor the parameter must be set to
DOC_NORMAL.

See the “RealSpeak API” chapter for a description of the
TtsSetParam(s) functions.

Sample code

A typical sequence of code using the e-mail preprocessor may look
like:

…
HTTSINSTANCE hInstance;
TTS_PARAM_T aParamList[1];

TtsInitializeEx (&hInstance, pServer, &Parm, &instanceData)
…
/*** Activate the e-mail preprocessor ***/
aParamList[0].nParam =

TTS_DOCUMENT_TYPE_PARAM;
aParamList[0].paramValue.nNo = DOC_EMAIL;

TtsSetParams(hInstance, aParamList, 1);

/*** Process an e-mail document ***/



Speechify API

Appendix L

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter IX/229

TtsProcessEx(hInstance,pSpeakData);

/*** Deactivate the e-mail preprocessor ***/
aParamList[0].nParam =

TTS_DOCUMENT_TYPE_PARAM;
aParamList[0].paramValue.nNo = DOC_NORMAL;

TtsSetParams(hInstance, aParamList, 1);



RealSpeak Telecom
Software Development Kit

Chapter X
Speechify API

Programmer’s Guide



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/231

Speechify API
Introduction

RealSpeak Telecom 4.0 and RealSpeak Solo 2.0 support nearly all of
the SWItts API of Speechify 3.0 and Speechify Solo 1.0 to ease the
migration of existing Speechify based integrations and applications to
the next-generation RealSpeak products that incorporate Speechify
technology. New software should only be developed using the native
RealSpeak APIs or the Microsoft SAPI 5 APIs, however.

For a detailed list of Speechify functionality that is not present in the
RealSpeak emulation of the SWItts API, and migration procedures,
see the RealSpeak Migration Guide for Speechify Customers.

API Reference
This chapter describes RealSpeak support for the SWItts API,
including functions that are not supported. For RealSpeak, the main
SWItts API function prototypes, types, error codes, and constants are
located in the header file SWItts.h.

Calling convention
The calling convention is dependent on the operating system, and is
defined in the SWItts.h header file.
On Windows, all SWItts API functions use the stdcall (or Pascal)
calling convention. The header files contain the appropriate compiler
directives to ensure correct compilation. When writing callback
functions, be sure to use the correct calling convention.

Under Windows:

#define SWIAPI __stdcall

Under UNIX:

#define SWIAPI



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/232

SDK’s preferred character set
The SDK’s preferred character set varies by language in the same way
as the native RealSpeak API. All strings passed to the API by calls to
SWIttsSpeak( ), SWIttsSpeakEx( ), and SWIttsDictionaryLoad( ) are
converted to the native character set for that language before they are
processed internally. Consequently, in RealSpeak, text entered into
this function must be representable in the preferred character set even
if it is encoded in another character set supported by the API.
Bookmark IDs are converted to 0-terminated wide character strings
before they are returned to the user.
See the RealSpeak User’s Guide for each language for details.

Result codes
The following result codes are defined in the enum SWIttsResult in
SWItts.h .

SWItts_ALREADY_EXECUTING_API This API function
cannot be executed
because another API
function is in progress
on this port on another
thread.

SWItts_ALREADY_INITIALIZED SWIttsInit( ) was called
when the SWItts API
library was already
initialized.

SWItts_CONNECT_ERROR The SWItts API could
not connect to the
engine.

SWItts_DICTIONARY_ACTIVE The dictionary is active;
it cannot be activated
again or cannot be freed
until deactivated.

SWItts_DICTIONARY_LOADED Dictionary is already
loaded.

SWItts_DICTIONARY_NOT_LOADED Dictionary has not been
loaded before attempting
to activate it.

SWItts_DICTIONARY_PARSE_ERROR Any error during
dictionary parsing.

SWItts_DICTIONARY_PRIORITY_ALREADY_
EXISTS

No duplicate priorities
are allowed in
dictionaries of the same
type and language.

SWItts_ERROR_PORT_ALREADY_STOPPING SWIttsStop( ) was called
when the port was
already in the process of
stopping.

SWItts_ERROR_STOP_NOT_SPEAKING SWIttsStop( ) was called
when the port was not



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/233

speaking.
SWItts_FATAL_EXCEPTION (Windows only.) A crash

occurred within the
SWItts API library. This
is an unrecoverable error
and you should close the
application.

SWItts_HOST_NOT_FOUND Could not resolve the
host name or IP address.

SWItts_INVALID_MEDIATYPE Unsupported MIME
content type for the
dictionary format or
speak text format.

SWItts_INVALID_PARAMETER One of the parameters
passed to the function
was invalid.

SWItts_INVALID_PORT The port handle passed
is not a valid port
handle.

SWItts_INVALID_PRIORITY Dictionary priority value
is out of range.

SWItts_LICENSE_ALLOCATED A license has already
been allocated for this
port.

SWItts_LICENSE_FREED A license has already
been freed for this port.

SWItts_MUST_BE_IDLE This API function can
only be called if the TTS
port is idle.

SWItts_NO_LICENSE There are no purchased
licenses available.

SWItts_NO_MEMORY An attempt to allocate
memory failed.

SWItts_NO_MUTEX An attempt to create a
new mutex failed.

SWItts_NO_THREAD An attempt to create a
new thread failed.

SWItts_NOT_EXECUTING_API An internal error. Notify
ScanSoft technical
support if you see this
result code.

SWItts_PORT_ALREADY_SHUT_DOWN The port is already
closed. You cannot
invoke SWIttsClosePort(
) on a port that has been
closed.

SWItts_PORT_ALREADY_SHUTTING_DOWN SWIttsClosePort( ) was
called when the port was
already being closed.

SWItts_PORT_SHUTTING_DOWN A command could not
be executed because the
port is shutting down.

SWItts_PROTOCOL_ERROR An error in the
client/server
communication protocol



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/234

occurred.
SWItts_READ_ONLY SWIttsSetParameter( )

was called with a read-
only parameter.

SWItts_SERVER_ERROR An error occurred on
the server.

SWItts_SOCKET_ERROR A sockets error
occurred.

SWItts_SSML_PARSE_ERROR Could not parse SSML
text.

SWItts_SUCCESS The API function
completed successfully.

SWItts_UNINITIALIZED The SWItts API is not
initialized.

SWItts_UNKNOWN_CHARSET Character set is invalid
or unsupported.

SWItts_UNSUPPORTED Feature is not supported.
SWItts_URI_FETCH_ERROR Any error during URI

access other than
SWItts_URI_NOT_FO
UND or
SWItts_URI_TIMEOU
T.

SWItts_URI_NOT_FOUND URI was not found: the
file does not exist or the
web server does not
have a matching URI.

SWItts_URI_TIMEOUT Timeout during web
server URI access.

SWItts_WINSOCK_FAILED WinSock initialization
failed. (Windows only.)

This is the full set of codes that the API functions return. No
functions return all the codes. SWItts_SUCCESS and
SWItts_FATAL_EXCEPTION are the only codes that are common
to all functions. All functions except SWIttsInit( ) return
SWItts_UNINITIALIZED if SWIttsInit( ) was not the first function
called.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/235

SWIttsAddDictionaryEntry( )
Mode

Synchronous

Purpose

Adds a list of dictionary entries to the specified dictionary.

SWIttsResult SWIAPI SWIttsAddDictionaryEntry (
SWIttsPort ttsPortExt,
const char* dictionaryType,
const char* charset,
SSFT_U32 numEntries,
SWIttsDictionaryEntry* entries
);

Notes

Currently not supported, always returns SWItts_UNSUPPORTED.
Use SWIttsDictionaryLoad( ) instead.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/236

SWIttsCallback( )
Mode

Synchronous. Important: You must not block/wait in this function.

Purpose

User-supplied handler for data returned by the synthesis engine.

typedef SWIttsResult (SWIAPI SWIttsCallback) (
SWIttsPort ttsPort,
SWItts_cbStatus Status,
void* data,
void* userData
);

Parameters

ttsPort The port handle returned by SWIttsOpenPortEx( ) or
SWITTS_INVALID_PORT (-1) if the callback is called
from within SWIttsInit( ), SWIttsOpenPortEx( ), or
SWIttsTerm( ).

status These are enumerated types that are used to inform the
callback function of the status of the void *data variable.
See table below.

data Pointer to a structure containing data generated by the
engine. This pointer is declared as void * because the
exact type varies. The status parameter indicates the
exact type to which this pointer should be cast.

userData This is a void * in which the application programmer
may include any information that he wishes to be passed
back to the callback function. A typical example is a
thread ID that is meaningful to the application. The
userData variable is a value you pass to these functions:
 SWIttsInit( ) for errors during SWIttsInit( )
 SWIttsTerm( ) for errors during SWIttsTerm( )
 SWIttsOpenPortEx( ) otherwise

This table lists the values of SWItts_cbStatus:

SWitts_cbAudio Audio data packet. The data structure is a
SWIttsAudioPacket shown below.

SWItts_cbBookmark User-defined bookmark. The data structure is
a SWIttsBookMark as shown below.

SWItts_cbDiagnostic Diagnostic message. The data structure is a
SWIttsMessagePacket as shown below. You
only receive this message if the
SWITTSLOGDIAG environment variable is
defined.

SWItts_cbEnd End of audio packets from the current
SWIttsSpeak( ) command. The data is a
NULL pointer.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/237

SWItts_cbError Asynchronous error message. This message is
received if an asynchronous API function
encounters an error when trying to perform
an asynchronous operation such as reading
from the network. If you receive this message,
consider it fatal for that port. You are free to
call SWItts functions from the callback but
you should consider the receipt of
SWItts_cbError fatal and call
SWIttsClosePort( ) to properly clean up the
port. This event is always preceeded with a
SWItts_cbLogError event that indicates the
error reason.
The ttsPort argument is
SWItts_INVALID_PORT (-1) and the
userData argument could be NULL if the
failure occurred during SWIttsInit( ),
SWIttsOpenPortEx( ), or SWIttsTerm( ).
Make sure you check for these possibilities
before your code dereferences userData or
uses the port number for a lookup.

SWItts_cbLogError Error message. The data structure is a
SWIttsMessagePacket which contains error
information, and is described below. The
callback may receive the cbLogError and
cbDiagnostic events at anytime, whether
inside a synchronous or asynchronous
function. The user is not allowed to call any
SWItts function at this time. If you receive
this message, log it to a file, console, etc., and
continue execution.
The ttsPort argument is
SWItts_INVALID_PORT (-1) and the
userData argument could be NULL if the
failure occurred during SWIttsInit( ),
SWIttsOpenPortEx( ), or SWIttsTerm( ).
Make sure you check for these possibilities
before your code dereferences userData or
uses the port number for a lookup.

SWItts_cbPhonememark Represents information about a phoneme
boundary in the input text. The data structure
is a SWIttsPhonemeMark shown below.

SWItts_cbPortClosed The port was successfully closed after a call to
SWIttsClosePort( ). The data is a NULL
pointer.

SWItts_cbStart Represents the commencement of audio
packets from the current SWIttsSpeak( )
command. The data is a NULL pointer.

SWItts_cbStopped SWIttsStop( ) has been called and recognized.
There is no SWItts_cbEnd notification. The
data is a NULL pointer.

SWItts_cbWordmark Represents information about a word
boundary in the input text. The data structure
is a SWIttsWordMark shown below



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/238

Structures

The audio packet data structure is described here:

typedef struct {
void * samples;
SSFT_U32 numBytes;
SSFT_U32 firstSampleNumber;
} SIttsAudioPacket;

Structure members:
a)

samples The buffer of speech samples. You must
copy the data out of this buffer before the
callback returns as the SWItts API library
may free it or overwrite the contents with
new samples.

numBytes The number of bytes in the buffer. This
number of bytes may be larger than the
number of samples, e.g., if you've chosen a
sample format of 16-bit linear, the number
of bytes would be twice the number of
samples.

firstSampleNumber The accumulated number of samples in the
current SWIttsSpeak( ) call. The first packet
has a sample number of zero.

The message packet data structure is described here:

typedef struct {
time_t messageTime;
SSFT_U16 messageTimeMs;
SSFT_U32 msgID;
SSFT_U32 numKeys;
const SSFT_TCHAR** infoKeys;
const SSFT_TCHAR** infoValues;
const SSFT_TCHAR* defaultMessage
} SWIttsMessagePacket;

Structure members:

messageTime The absolute time at which the
message was generated.

messageTimeMs An adjustment to messageTime to
allow millisecond accuracy.

msgID An unique identifier corresponding to
one of the SWItts_err[…] defines in 
SWItts.h. A value of 0 is used for
SWItts_cbDiagnostic messages.

numKeys The number of key/value pairs (the
number of entries in the infoKeys and
infoValues arrays). For
SWItts_cbLogDiagnostic messages,
this is always 0. For



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/239

SWItts_cbLogError messages, this may
be 0 or greater.

infoKeys/infoValues Additional information about message,
in key/value pairs of 0-terminated wide
character string text. These members
are only valid for SWItts_cbLogError
messages.

defaultMessage A pre-formatted 0-terminated wide
character message. This member is
only valid for SWItts_cbDiagnostic
messages.

The bookmark data structure is described here:

typedef struct {
const SFT_TCHAR * ID;
SSFT_U32 sampleNumber;
} SWIttsBookMark;

Structure members:

ID A pointer to the bookmark 0-
terminated wide character string. It
corresponds to the user-defined integer
specified in the bookmark tag.

sampleNumber The bookmark location, specified by
an accumulated number of samples for
the current SWIttsSpeak( ) call. A
bookmark placed at the beginning of a
string has a timestamp of 0. The
sampleNumber always refers to a
sample number in the future (that has
not yet been received).

The wordmark data structure is described here:

typedef struct {
SSFT_U32 sampleNumber;
SSFT_U32 offset;
SSFT_U32 length;
}SWIttsWordMark;

Structure members:

sampleNumber The sample number correlating to the
beginning of this word. The
sampleNumber always refers to a sample
number in the future (that has not yet
been received).

offset The index into the input text of the first
character where this word begins. Starts
at zero.

length The length of the word in characters not
bytes.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/240

The phoneme-mark data structure is described here:

typedef struct {
SSFT_U32 sampleNumber;
const char* name;
SSFT_U32 duration;
SSFT_U32 stress;
}SWIttsPhonemeMark;

Structure members:

sampleNumber The sample number correlating to the
beginning of this phoneme. The
sampleNumber always refers to a sample
number in the future (that has not yet
been received).

name The name of the phoneme as a NULL-
terminated US-ASCII string. (The
phoneme names are described in the
RealSpeak supplements for each
language.)

duration The length of the phoneme in samples.
stress Not currently supported, this is always

set to 0.

Notes

The callback function is user-defined but is called by the SWItts
library, i.e., the user writes the code for the callback function, and a
pointer to it is passed into the SWIttsOpenPortEx( ) function. The
SWItts API library calls this function as needed when data arrives
from the RealSpeak engine. It is called from a thread created for the
port during the SWIttsOpenPortEx( ) function.
The SWItts_cbStatus variable indicates the reason for invoking the
callback and also what, if any, type of data is being passed. The
SWIttsResult code returned by the callback is not currently
interpreted by RealSpeak, but may be in the future, thus the callback
function should always return SWItts_SUCCESS.
Because the callback function is user-defined, the efficiency of its
code has a direct impact on system performance - if it is inefficient, it
may hinder the SWItts API library's ability to service the engine or
TTS server’s network connection and data may be lost.
The RealSpeak engine usually delivers audio data to the application
faster then real-time. This means that sending a large amount of text
to the SWIttsSpeak( ) function may cause the engine to send back a
large amount of audio before the application needs to send it to an
audio device or telephony card.
On average for Western languages, expect about one second of audio
for every ten characters of text input. For example, if you pass 10 KB
of text to the SWIttsSpeak( ) function, your callback may receive
about 1000 seconds of audio samples. That is 8 MB of data if you
chose to receive 8-bit -law samples and 16 MB of data if you chose to
receive 16-bit linear samples. This amount of text may require more
buffering than you want to allow for, especially in a scenario with
multiple TTS ports.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/241

A common technique to avoid a buffering load is to call SWIttsPause(
) when the audio buffer exceeds some application defined buffer size
limit (commonly referred to as a “high watermark”), and then call 
SWIttsResume( ) when the audio buffer falls below some application
defined buffer size limit (commonly referred to as a “low 
watermark”).



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/242

SWIttsClosePort( )
Mode

Asynchronous

Purpose

Closes a TTS port, freeing all resources and closing all
communication with the TTS engine instance.

SWIttsResult SWIAPI SWIttsClosePort (
SWIttsPort ttsPort
);

Parameters

ttsPort Port handle returned by
SWIttsOpenPortEx( ).

After closing, SWIttsClosePort( ) sends a SWItts_cbPortClosed
message to the callback upon successful closing of the port. Once a
port is closed, you cannot pass that port handle to any SWItts
function.

See also

SWIttsOpenPortEx( )



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/243

SWIttsDeleteDictionaryEntry( )
Mode

Synchronous

Purpose

Deletes a list of dictionary entries from a dictionary.

SWIttsResult SWIAPI SWIttsDeleteDictionaryEntry (
SWIttsPort ttsPort,
const char* dictionaryType,
const char* charset,
SSFT_U32 numEntries,
SWIttsDictionaryEntry* entries
);

Notes

Not currently supported, always returns SWItts_UNSUPPORTED.
Use SWIttsDictionaryLoad( ) and SWIttsDictionaryFree( ) instead.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/244

SWIttsDictionaryActivate( )
Mode

Synchronous

Purpose

Activate a dictionary for subsequent SWIttsSpeak( ) requests.

SWIttsResult SWIAPI SWIttsDictionaryActivate (
SWIttsPort ttsPort,
const SWIttsDictionaryData* dictionary,
SSFT_U32 priority
);

Parameters

ttsPort Porthandle returned by SWIttsOpenPortEx( )
dictionary Object containing the URI and fetch parameters, or a

string
priority Priority to assign to this dictionary compared to other

active dictionaries. Values: Integers 1–2^31. Lowest
priority: 1.

See SWIttsDictionaryLoad( ) for the specification of the
SWIttsDictionaryData data structure.

Applications must use SWIttsDictionaryLoad( ) to load a dictionary
before activating it.

Activating the dictionary never triggers a reload of the dictionary. To
refresh a loaded dictionary that may be changed, call
SWIttsDictionaryFree( ) followed by SWIttsDictionaryLoad( ), and
then activate the dictionary. See “SWIttsDictionaryLoad( )” for more
information.

If you want dictionaries to be active for a speak request, load and
activate them before calling SWIttsSpeak( ). (SWIttsSpeak( ) does not
require any activated dictionaries.) Once activated, dictionaries are
active until they are explicitly deactivated. More than one dictionary
can be activated at any given time. When you are finished using all
dictionaries, call SWIttsDictionariesDeactivate( ) and then
SWIttsDictionaryFree( ) to clean up the resources.

The dictionary priority is a unique integer ranking the priority of this
dictionary compared to all other activated dictionaries of the same
language and type. During speak requests, the engine performs a
lookup in the dictionary of the appropriate type with the highest
priority. If the lookup fails, it tries the dictionary of the appropriate
type with the next highest priority, until there are no more dictionaries
of that type to try.

SWIttsDictionaryActivate( ) may return the following error codes:



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/245

SWItts_DICTIONARY_ACTIVE The dictionary is already activated
SWItts_DICTIONARY_NOT_
LOADED

The dictionary is not loaded

SWItts_DICTIONARY_PRIORITY
_ ALREADY_EXISTS

No duplicate priorities are
allowed in dictionaries of the
same type and language

SWItts_INVALID_PARAMETER The ttsPort or dictionary
parameter is NULL or invalid

SWItts_MUST_BE_IDLE A speak operation is active on
this port

See also

“SWIttsDictionariesDeactivate( )” 
“SWIttsDictionaryFree( )” 
“SWIttsDictionaryLoad( )”



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/246

SWIttsDictionariesDeactivate( )
Mode

Synchronous

Purpose

Deactivates all activated dictionaries for subsequent speak requests.

SWIttsResult SWIAPI SWIttsDictionariesDeactivate (

SWIttsPort ttsPort
);

Parameters

ttsPort Port handle returned by SWIttsOpenPortEx( ).

When you are finished using a dictionary, call SWIttsDictionaryFree( )
to clean up the resources used by the dictionary data.

SWIttsDictionariesDeactivate( ) does not deactivate the default
dictionaries that are configured for the Realspeak engine.

Active dictionaries remain active until they are explicitly deactivated
by SWIttsDictionariesDeactivate( ). They are not automatically
deactivated after each speak request. SWIttsDictionariesDeactivate( )
deactivates all active dictionaries. There is no way to deactivate
individual dictionaries. To deactivate only some of the currently active
dictionaries, use this function to deactivate all dictionaries, then re-
activate the desired dictionaries with SWIttsDictionaryActivate( ).

SWIttsDictionariesDeActivate( ) may return the following error
codes:

SWItts_INVALID_PARAMETER The ttsPort parameter is NULL or
invalid

SWItts_MUST_BE_IDLE A speak operation is active on this
port

See also

“SWIttsDictionaryActivate( )” 
“SWIttsDictionaryFree( )” 
“SWIttsDictionaryLoad( )” 



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/247

SWIttsDictionaryFree( )
Mode

Synchronous

Purpose

Signals the engine that the dictionary is no longer needed.

SWIttsResult SWIAPI SWIttsDictionaryFree (
SWIttsPort ttsPort,
const SWIttsDictionaryData* dictionary
);

Parameters

ttsPort Porthandlereturned by SWIttsOpenPortEx( ).
dictionary Object containing the URI and fetch parameters, or a

string.

When you are finished using a dictionary, call SWIttsDictionaryFree( )
to clean up the resources used by the dictionary data.

SWIttsDictionaryFree( ) c anno t be used to free the default
dictionaries that are configured for the RealSpeak engine.

SWIttsDictionaryFree( ) may return the following error codes:

SWItts_DICTIONARY_ACTIVE Dictionary cannot be freed until
deactivated.

SWItts_DICTIONARY_NOT_
LOADED

Dictionary is not loaded

SWItts_INVALID_PARAMETER The ttsPort or dictionary parameter
is NULL or invalid.

SWItts_MUST_BE_IDLE A speak operation is active on this
port.

See also

“SWIttsDictionaryActivate( )” 
“SWIttsDictionariesDeactivate( )”
“SWIttsDictionaryLoad( )” 



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/248

SWIttsDictionaryLoad( )
Mode

Synchronous

Purpose

Load a complete dictionary from a URI or string to prepare it for
future activation.

SWIttsResult SWIAPI SWIttsDictionaryLoad (
SWIttsPort ttsPort,
constSWIttsDictionaryData* dictionary
);

Parameters

ttsPort Port handle returned by SWIttsOpenPortEx( )
dictionary Object containing the URI and fetch parameters, or a

string

A dictionary must be loaded before it can be activated. If you want the
engine to apply dictionaries to text passed in the SWIttsSpeak( ) and
SWIttsSpeakEx( ) functions, you must load and activate them before
calling SWIttsSpeak( ) or SWIttsSpeakEx( ).

SWIttsDictionaryLoad( ) blocks until dictionary loading and parsing is
complete.

Structures

The SWIttsDictionaryData structure is defined as follows:

typedef struct SWIttsDictionaryData {
SSFT_U32 version;
const char* uri;
const unsignedchar* data;
SSFT_U32 lengthBytes;
const char* contentType;
const VXIMap* fetchProperties
VXIMap* fetchCookieJar;
}SWIttsDictionaryData;



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/249

Structure members:

version Use the constant SWItts_CURRENT_VERSION,
defined in SWItts.h.

uri URI to the dictionary content; co n t en tTy pe may be
NULL. Pass NULL when da t a is non-NULL. The
URI may be one of the following:
* (RealSpeak Telecom only) HTTP/1.1 web

server access, where the URL is fetched by
the Realspeak server:
http: //myserver/mydict. xml

* Simple file access. For RealSpeak
Telecom, the file is resolved on the
Realspeak server. for example:
file:/users/mydict.xml
/users/mydict.xml

data In-memory dictionary content; co n t en tType
must be non-NULL. Pass NULL when ur i is
non-NULL

length Bytes Length of the in-memory dictionary content in
bytes. Pass 0 when ur i is non-NULL

content Type MIME content type to identify the dictionary
format. One of the following:
* NULL: only valid when type is “uri”. 

Automatically determines the content type
from the URI. For http: URIs, the MIME
content type returned by the web server is
processed using the rules that follow. For
file: URIs, files with a .xml extension are
treated as Scansoft dictionaries, otherwise
an error results

* application/octet-stream: assume a
RealSpeak dictionary (this is the default
MIME content type returned by web
servers for unknown data types)

* application/edct-bin-dictionary: RealSpeak
binary format dictionary

* application/edct-text-dictionary: RealSpeak
text format dictionary

* text/xml: assume a RealSpeak text
format dictionary for backward
compatibility with Speechify (this
permits migrating the dictionary in-
place without changing C code)
application/x-swi-dictionary: assume a
RealSpeak text format dictionary for
backward compatibility with Speechify
(this permits migrating the dictionary in-
place without changing C code)
Other: a
SWItts_INVALID_MEDIATYPE error
is returned

fetchProperties (RealSpeak Telecom only) Optional
VXIMap to control Internet fetch operations
(particularly the base URI and fetch timeouts).
May be NULL to use defaults. These settings
apply to the fetch of the dictionary when uri is



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/250

non-NULL.
fetchCookieJar (RealSpeak Telecom only) Optional

VXIMap to provide session or end-user-
specific cookies for Internet fetch operations,
modified to return the updated cookie state on
success. May be NULL to disable cookies
(web server cookies are refused).

If an application asks SWIttsDictionaryLoad( ) to load a dictionary
that is already loaded, Realspeak returns the non-fatal error code
SWItts_DICTIONARY_ LOADED. To refresh Realspeak’s copy of 
a dictionary that has been updated or changed elsewhere, call
SWIttsDictionaryFree( ) then SWIttsDictionaryLoad( ) to force
Realspeak to reload the dictionary.

SWIttsDictionaryLoad( ) may return the following error codes:

SWItts_DICTIONARY_LOADED Dictionary is already loaded.
SWItts_DICTIONARY_PARSE_
ERROR

Any error during dictionary
parsing.

SWItts_INVALID_MEDIATYPE Unsupported MIME content
type for the dictionary
format.

SWItts_INVALID_PARAMETER The ttsPort or dictionary
parameter is NULL or
invalid.

SWItts_MUST_BE_IDLE A speak operation is active on
this port

SWItts_UNKNOWN_CHARSET Character set for the
dictionary is invalid or
unsupported

SWItts_URI_FETCH_ERROR Any error during URI access
other than SWItts_
URI_NOT_FOUND or
SWItts_URI_ TIMEOUT

SWItts_URI_NOT_FOUND URI was not found (file does
not exist or the web server
does not have a matching
URI).

SWItts_URI_TIMEOUT Timeout during web server
URI access



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/251

See also

“SWIttsDictionaryActivate( )” 
“SWIttsDictionariesDeactivate( )” 
“SWIttsDictionaryFree( )” 



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/252

SWIttsGetDictionaryKeys( )
Mode

Synchronous

Purpose

Enumerates dictionary keys from the specified dictionary.

SWIttsResult SWIAPI SWIttsGetDictionaryKeys(
SWIttsPort ttsPort,
const char* dictionaryType,
SWIttsDictionaryPosition* startingPosition,
SSFT_U32* numkeys,
SWIttsDictionaryEntry** keys,
const char* reserved
);

Notes

Not currently supported, always returns SWItts_UNSUPPORTED.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/253

SWIttsGetParameter( )
Mode

Synchronous

Purpose

Retrieves the value of a parameter from the server.

SWIttsResult SWIAPI SWIttsGetParameter (
SWIttsPort ttsPort,
const char* name,
char* value
);

Parameters

ttsPort Theporthandle returned by SWIttsOpenPortEx( ).
name The name of the parameter to retrieve.
value Takes a preallocated buffer of size

SWITTS_MAXVAL_SIZE.

The following table describes the parameters that can be retrieved.
Certain parameters are read-only.

Name Possible values Read
-only

Description

tts.audio.packetsize even number 64-
102400

no Maximum size of the audio
packets, in bytes, that the SWItts
API sends to the user supplied
callback function. (All packets will
be this size except the last packet,
which may be smaller.)

tts.audio.rate 33-300 no Port-specific speaking rate of the
synthesized text as a percentage of the
default rate.

tts.audio.volume 0-100 (see
description for
caveat.)

no Port-specific volume of synthesized
speech as a percentage of the default
volume: 100 means maximum possible
without distortion and 0 means silence.
Values greater than 100 are permitted,
but output might have distortion.

tts.audioformat.encoding ulaw, alaw, linear yes Encoding method for audio generated
during synthesis. This value can be set
via the mimetype.

tts.audioformat.mimetype audio/basic

audio/x-alaw-basic

audio/L16;rate=800
0

No The audio format:



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/254

* audio/basic corresponds to 8
kHz, 8-bit -law;

* audio/x-alaw-basic corresponds to
8 kHz, 8-bit A-law;

* audio/L16;rate=8000
corresponds to 8 kHz, 16-bit
linear;

* audio/L16;rate=11000
corresponds to 11 kHz, 16-bit
linear;

* audio/L16;rate=16000
corresponds to 16 kHz, 16-bit
linear.

* audio/L16;rate=22000
corresponds to 22 kHz, 16-bit
linear;

audio/L16;rate=110
00

audio/L16;rate=160
00

audio/L16;rate=2
2000

All other values generate a
SWItts_INVALID_PARAMETER
return code.

In all cases, audio data is returned in
network byte order.

tts.audioformat.samplerate 8000, 11000,
16000, 22000

yes Audio sampling rate in Hz.
This value can be set via the
mimetype

tts.audioformat..width 8, 16 yes Size of individual audio sample in
bits
This value can be set via the
mimetype

tts.client.version Current
RealSpeak SWItts
API library
version number

yes The returned value is a string of the
form major.minor.maintenance. For
example, 2.0.0 or 2.0.1.

This parameter reflects the SWItts
API library version, and can be
retrieved after SWIttsInit( ) is
called but before
SWIttsOpenPortEx( ) is called.
Use SWITTS_INVALID_PORT
for the first argument to
SWIttsGetParameter( ).

tts.engine.id positive integer yes RealSpeak engine logical channel
ID that is handling speak requests
for this SWItts API library port.
The RealSpeak engine logs
diagnostics, errors, and events to
its diagnostic and error log using
this logical channel ID, so
including this logical channel ID
in application logs can help in
cross-referencing application and
RealSpeak engine logs.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/255

tts.engine.version Current Realspeak
engine version
number

yes The returned value is a string of
the form
major.minor.maintenance. For
example, 2.0.0 or 2.0.1.

tts.marks.phoneme true, false no controls whether phoneme marks
are reported to the client

tts.mark.word true, false no controls whether wordmarks are
reported to the client

tts.network.timeout positive integer no (RealSpeak Telecom client/server
mode only) Timeout, in seconds,
for the connection to the
RealSpeak server. If a send
operation to the server fails to
complete within this duration, or
if a heartbeat is not received from
a server in this duration, the server
connection is presumed to be
dead and the connection is
dropped.

tts.product.name "RealSpeak Host",
"RealSpeak Solo"

yes "RealSpeak Host" for the main
RealSpeak Host product;
"RealSpeak Solo" for the
RealSpeak Solo product.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/256

tts.server.licensingMode default, explicit yes Modes for controlling license
allocation to a Realspeak port object
* default: automatically

when
SWIttsOpenPortEx( ) is
called

* explicit: as decided by
the platform developer.
Use
SWIttsResourceAllocate
( ) and
SWIttsResourceFree( )
to control allocation and
de-allocation of licenses

tts.voice.gender male, female yes synthesis voice gender
tts.voice.language server yes synthesis language
tts.voice.name server yes unique name identifying the voice
tts.voice.version current Realspeak

voice version
number

yes The returned value is a string of
the form
major.minor.maintenance. For
example, 2.0.0.

See also

“SWIttsSetParameter( )”



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/257

SWIttsInit( )
Mode

Synchronous

Purpose

Initializes the SWItts API library so that it is ready to open ports.

SWIttsResult SWIAPI SWIttsInit (
SWIttsCallback* callback,
SWIttsCallback* userData
);

Parameters

callback A pointer to a callback function that may receive
SWItts_cbLogError and/or SWItts_cbDiagnostic
messages during the SWIttsInit( ) call. If this callback
is called, the ttsPort parameter is–1. This may be the
same callback that is passed to SWIttsOpenPortEx(
) or SWIttsTerm( ).

userData User information passed back to callback. It is not
interpreted or modified in any way by the SWItts
API library

Notes

This must be the first API function called, and it should only be
called once per process, not once per call to SWIttsOpenPortEx( ).

SWIttsInit( ) may return the following error codes:

SWItts_ALREADY_INITIALIZED The SWItts API library is
already initialized (from a prior
SWIttsInit( ) call).

See also

“SWIttsOpenPortEx( )”
“SWIttsTerm( )”



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/258

SWIttsLookupDictionaryEntry( )
Mode

Synchronous

Purpose

Retrieves the translation for the given key from the specified
dictionary.

SWIttsResult SWIAPI SWIttsLookupDictionaryEntry(
SWIttsPort ttsPort,
const char* dictionaryType,
const SSFT_U8* key,
const char* charset,
SSFT_U32 keyLengthBytes,
SSFT_U32* numEntries,
SWIttsDictionaryEntry** entries
);

Notes

Not currently supported, always returns SWItts_UNSUPPORTED.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/259

SWIttsOpenPort()
Mode

Synchronous

Purpose

This function opens and connects to a RealSpeak engine port. Call
this function after SWIttsInit( ).

RealSpeak Solo:

SWIttsOpenPort(
SWIttsPort* ttsPort,
const char* parameters,
SWIttsCallback* callback,
void* userData
);

RealSpeak Telecom:

SWIttsResult SWIAPI SWIttsOpenPort(SWIttsPort *ttsPort,
const char* hostAddr,
SSFT_U16 connectionPort,
SWIttsCallback* callback,
void* userData
);

Notes

SWIttsOpenPort() is merely a Speechify 2.1 and Speechify Solo 1.0
compatibility layer on top of SWIttsOpenPortEx( ). See
SWIttsOpenPortEx( ) for parameter and return code details.

For RealSpeak Solo, SWIttsOpenPort( ) is equivalent to calling:

SWIttsOpenPortEx(ttsPort, parameters, NULL, callback, userData);

For RealSpeak Telecom, SWIttsOpenPort( ) is equivalent to:

char parameters[1024];
sprintf(parameters, “hostname=%s;hostport=%u”, hostAddr, 
connectionPort);
SWIttsOpenPortEx(ttsPort, parameters, NULL, callback, userdata);

See also

SWIttsOpenPortEx( )
SWIttsClosePort( )
SWIttsInit( )



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/260

SWIttsOpenPortEx( )
Mode

Synchronous

Purpose

This function opens and connects to a Realspeak engine port. Call
this function after SWIttsInit( ).

SWIttsOpenPortEx(
SWIttsPort* ttsPort,
const char* parameters,
SWIttsResources* resources,
SWIttsCallback* callback,
void* userdata
);

Parameters

ttsPort Addressofa location to place the new port’s handle
parameters Key/value parameter list in

<key1>=<value1>;<key2>=<value2>[...] form. If
there is no engine matching the specified parameters, or
if the set of parameters does not uniquely identify an
engine, the call returns
SWItts_INVALID_PARAMETER.

Use these keys and values in the parameters field to
specify a voice:

 language, such as “American English”

 name, such as “Jennifer”

 sample_rate, such as “8000”

 (RealSpeak Solo only) quality, currently ignored

 (RealSpeak Solo only) reduction_type, a voice
reduction type as listed in the RealSpeak
language documentation

 (RealSpeak Telecom only) hostname, a
RealSpeak server host name such as “localhost”

 (RealSpeak Telecom only) hostport, a
RealSpeak server host TCP/IP port number
such as “6666”

resources Reserved for future use, pass NULL
callback A pointer to a callback function that receives audio buffers and

other notifications when the server sends data to the client. If an
error occurs during the call to SWIttsOpenPortEx( ), the callback
is called with a SWItts_cbLogError message and a ttsPort of–1.

userData User information passed back to callback



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/261

Notes

For compatibility with Speechify, RealSpeak Telecom applies special
mapping rules if hostname and hostport are specified without
specifying a language or name. These mapping rules are loaded from
config/swittsclient.cfg when SWIttsInit( ) is called, and is used to
translate a Speechify port number to a RealSpeak port number,
language name, voice name, and sample rate. This is required because
a Speechify server instance (hostname and hostport pair) could only
support one voice and sample rate, so that information was sufficient
to also identify the desired language, voice, and sample rate. However,
a RealSpeak server instance can support any number of languages,
voices, and sample rates simultaneously. If you are using the default
Speechify and RealSpeak server port numbers, then the default
mapping rules should be sufficient. If you use custom server port
numbers, however, then you should customize swittsclient.cfg to
define rules for mapping those port numbers. See swittsclient.cfg for
details.

SWIttsOpenPortEx( ) may return the following error codes:

SWItts_INVALID_PARAMETER One of the parameters to the function
was invalid.

SWItts-NO_LICENSE There are no purchased licenses
available



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/262

Example

Below is an example of how you would use this API function for
RealSpeak Solo:

SWIttsPort port;
SWIttsOpenPortEx(&port,
"language=American English;name=Jennifer;sample_rate=8000",
callback, NULL);

Below is an example of how you would use this API function for
RealSpeak Telecom:

SWIttsPort port;
SWIttsOpenPortEx(&port,
"hostname=localhost;hostport=6666;language=American
English;name=Jennifer;sample_rate=8000",
callback, NULL);

See also

“SWIttsClosePort( )” 
“SWIttsInit( )



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/263

SWIttsPause( )
Mode

Asynchronous

Purpose

(RealSpeak Solo only) Pauses the current active speak request.

SWIttsResult SWIAPI SWIttsPause (
SWIttsPort ttsPort
);

Parameters

ttsPort The port handle returned by SWIttsOpenPortEx( ).
b)

Notes

This pauses the delivery of audio, marks, and other events for the
current active speak request. To resume the request, call
SWIttsResume( ). Note that since RealSpeak usually delivers audio
faster then real-time, this call is not sufficient to fully implement an
application level pause operation: to fully implement a pause for the
end user, the application needs to pause the audio playback device,
then call this API function to prevent overflowing the application
level audio buffer.
If there is no SWIttsSpeak( ) function in progress, or if a currently
active speak request is already paused due to a previous call to
SWIttsPause( ), this function returns an error.

See also

SWIttsSpeak( )
SWIttsSpeakEx( )
SWIttsResume( )



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/264

SWIttsPing( )
Mode

Asynchronous

Purpose

Performs a basic test of the TTS engine instance responsiveness.

SWIttsResult SWIAPI SWIttsPing (
SWIttsPort ttsPort
);

Parameters

ttsPort The port handle returned by SWIttsOpenPort( )

This verifies that the instance of the TTS engine instance for this port
is alive and accepting requests.
A return code of SWItts_SUCCESS means that the ping has been
successfully sent to the TTS port. When the TTS engine instance
replies, the SWItts API library calls the callback for this port with a
status of SWItts_cbPing. If this function returns an error code, shut
down the port with the SWIttsClosePort( ) call. The amount of time
you should wait for the SWItts_cbPing message in your callback
varies depending on the load on your system; a good rule of thumb is
to wait about five seconds for a ping reply before assuming the port is
dead.

See also

SWIttsClosePort( )
SWIttsOpenPort( )



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/265

SWIttsResetDictionary( )
Mode

Synchronous

Purpose

Removes all entries from the specified dictionary.

SWIttsResult SWIAPI SWIttsResetUserDictionary(
SWIttsPort ttsPort,
const char* dictionaryType
);

Notes

Not currently supported, always returns SWItts_UNSUPPORTED.



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/266

SWIttsResourceAllocate( )
Purpose

(RealSpeak Telecom only) Explicitly assign a license for a specified
Realspeak port.

SWIttsResult SWIttsResourceAllocate(
SWIttsPort ttsPort,
const SSFT_TCHAR* feature,
void* reserved
);

Parameters

ttsPort Theporthandlereturned by SWIttsOpenPortEx( ).
feature Use the constant SWItts_LICENSE_SPEAK defined

in SWItts.h for licensing functionality.
reserved This parameter is reserved for future use. Pass in NULL

Notes

The tts.server.licensingMode configuration parameter must be set to
"explicit" for SWIttsResourceAllocate( ) to work. You can use
SWIttsGetParameter( ) to retrieve the value of
tts.server.licensingMode and find out whether you need to call this
function (and explicitly allocate and free licenses) or not. If the
licensing mode is set to "default," the SWIttsOpenPortEx( ) function
implicitly allocates a license for the application.

SWIttsResourceAllocate( ) may return the following error codes:

SWItts_INVALID PARAMETER An invalid feature parameter was specified
SWItts_LICENSE_ALLOCATED A license has already been allocated for this

port..
SWItts_MUST_BE_IDLE A speak operation is active
SWItts_NO_LICENSE There are no purchased licenses available
SWItts_UNSUPPORTED The tts.server.licensingMode parameter is

not set to explicit.

See also

“SWIttsResourceFree( )”



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/267

SWIttsResourceFree( )
Purpose

(RealSpeak Telecom only) Explicitly free the user license for the
specified Realspeak port.

SWIttsResult SWIttsResourceFree(
SWIttsPort ttsPort,
const SSFT_TCHAR* feature,
void* reserved
);

Parameters

ttsPort Theporthandlereturnedby SWIttsOpenPortEx( ).
feature Use SWItts_LICENSE_SPEAK to free a license
reserved This parameter is reserved for future use. Pass in

NULL.

Notes

The tts.server.licensingMode configuration parameter must be set to
explicit for SWIttsResourceFree( ) to work.

Note that SWIttsClosePort( ) also frees the license for a port while
freeing all other resources for that port.

SWIttsResourceFree( ) may return the following error codes:

SWItts_INVALID_PARAMETER An invalid feature parameter was specified
SWItts_LICENSE_FREED A license has already been freed for this port.
SWItts_MUST_BE_IDLE A speak operation is active.
SWItts_NO_LICENSE There are no purchased licenses available
SWItts_UNSUPPORTED The tts.server.licensingMode parameter is not

set to explicit

See also

“SWIttsClosePort( )
“SWIttsResourceAllocate( )”



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/268

SWIttsResume( )
Mode

Asynchronous

Purpose

(RealSpeak Solo only) Resumes a paused active speak request.

SWIttsResult SWIAPI SWIttsResume (
SWIttsPort ttsPort
);

Parameters

ttsPort The port handle returned by SWIttsOpenPortEx( ).

Notes

This resumes the delivery of audio, marks, and other events for a
paused speak request.
If there is no SWIttsSpeak( ) function in progress, or if a currently
active speak request is not paused, this function returns an error.

See also

SWIttsSpeak( )
SWIttsSpeakEx( )
SWIttsPause( )



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/269

SWIttsSetParameter( )
Mode

Synchronous

Purpose

Sends a parameter to the TTS engine instance.

SWIttsResult SWIAPI SWIttsSetParameter(
SWIttsPort ttsPort,
const char* name,
const char* value
);

ttsPort The port handle returned by SWIttsOpenPortEx( ).
name A parameter name represented as a NULL-terminated

US-ASCII string
value A parameter value represented as a NULL-terminated

US-ASCII string

Notes

If SWIttsSetParameter( ) returns an error, the parameter is not
changed. Setting a parameter is not a global operation, it only affects
the TTS port passed to the call.

The following table describes the parameters that can be set. All
parameters have a default value from the server XML configuration
file. SWIttsGetParameter( ) lists the read-only parameters. If you try to
set a read-only parameter, SWIttsSetParameter( ) returns
SWItts_READ_ONLY.

Name Possible
values

Description

tts.audio.packetsize Even number
64-102400
Recommended
values:
1024,2048,or
4096

Maximum size of the audio
packets, in bytes, that the
SWItts API sends to the user
supplied callback function. (All
packets are this size except the
last packet, which may be
smaller.)

tts.audio.rate 33-300 Port-specific speaking rate of the
synthesized text as a percentage of
the default rate.

tts.audio.volume 0-100
(See description
for caveat.)

Port-specific volume of synthesized
speech as a percentage of the
default volume: 100 means
maximum possible without
distortion and 0 means silence.
Values greater than 100 are
permitted, but output might have



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/270

distortion.
tts.audioformat.mim
etype

audio/basic

audio/x-alaw-
basic
audio/L16;rate=8
000
audio/L16;rate=1
1000
audio/L16;rate=1
6000
audio/L16;rate=2
2000

The audio format of the server
- audio/basic corresponds to 8
kHz, 8-bit µ-law
- audio/x-alaw-basic
corresponds to 8 kHz, 8-bit A-
law
- audio/L16;rate=8000
corresponds to 8 kHz, 16-bit
linear
- audio/L16;rate=11000
corresponds to 11 kHz, 16-bit
linear
- audio/L16;rate=16000
corresponds to 16 kHz, 16-bit
linear
- audio/L16;rate=22000
corresponds to 22 kHz, 16-bit
linear
All other values generate a
SWItts_INVALID_PARAM
return code.
In all cases, audio data is returned
in network byte order.

tts.marks.phoneme true, false Controls whether phoneme
marks are reported to the
application.

tts.marks.word true, false Controls whether wordmarks are
reported to the application.

tts.network.timeout positive integer (RealSpeak Telecom
client/server mode only)
Timeout, in seconds, for the
connection to the RealSpeak
server. If a send operation to
the server fails to complete
within this duration, or if a
heartbeat is not received from
a server in this duration, the
server connection is presumed
to be dead and the connection
is dropped.

tts.reset none Command which causes all
parameters controllable via
SWIttsSetParameter( ) to revert to
their default values; the value is
ignored.

tts.audioformat.mimetype values may be switched between
audio/basic, audio/x-alaw-basic, and audio/L16;rate=8000 if the
server has been instantiated with the 8 kHz voice database. If the
server is instantiated with the 1 6 kHz voice database, this parameter
has the read-only value of audio/L16:rate=16000

In a client/server environment, the default rate and volume is set in
RealSpeak Server configuration file (ttsserver.xml, see“Configuration 
Files” section in the “User Configuration” chapter). If the rate or



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/271

volume is set through this API call, the new value overrides those
defaults. Similarly, if the rate or volume is set through markup in the
input text, those values override both the RealSpeak Server default
and the value set via the API for that (and only that) speak request.

See also

“SWIttsGetParameter( )” 



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/272

SWIttsSpeak( )
Mode

Asynchronous

Purpose

Sends a text string to be synthesized. Call this function for every text
string to synthesize.

SWIttsResultSWIAPI SWIttsSpeak(
SWIttsPort ttsPort,
const SSFT_U8* text,
SSFT_U32 lengthBytes,
const char* content_type
);

Parameters

ttsPort The port handle returned by SWIttsOpenPortEx( )
text The text to be synthesized: an array of bytes representing a

string in a given character set.
lengthBytes The length of the text array in bytes; note that this means

any NULL in the text is treated as just another character.
content_type Description of the input text according to the MIME

standard (per RFC-2045 Sec. 5.1 and RFC 2046).
Default (if set to NULL): text/plain;charset=iso-8859-1.

Notes

See SWIttsSpeakEx( ) to do either of these tasks:

 Have Realspeak fetch the document to speak from a web
server (instead of the text being in memory)

 (RealSpeak Telecom only) Specify internet fetch controls for
<audio> elements within W3C SSML documents

The content types that are supported are text/* and
application/ssml+xml (or application/synthesis+ssml).

Any subtype may be used with "text". However, only the subtype
"xml" is treated specially: the text is assumed to be in W3C SSML and
if it is not, an error is returned. All other subtypes are treated as
"plain".
(RealSpeak Telecom only) The "application/ssml+xml" content type
is used to indicate W3C SSML content, which is parsed accordingly.
If W3C SSML input is not signaled via the content type parameter, it
is pronounced as plain text.
The only meaningful content_type parameter is "charset," which is
case-insensitive. (See www.iana.org/assignments/character-sets for more



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/273

details.) All other parameters are ignored. If "charset" is not specified,
it is assumed to be ISO-8859-1. An example of a valid content type:

 text/plain;charset=iso-8859-1

The supported character sets vary by language:

Character set Languages Notes
UTF-8 All languages
UTF-16 All languages If the byte order mark is missing,

big-endian is assumed
wchar_t All languages “wchar_t" is not a MIME standard. 

It indicates that the input is in the
form of the operating system's
native wide character array (i.e.,
wchar_t *). Note that input length
must still be specified in bytes (i.e.,
the number of wide characters in
the input times the number of
bytes per wide character).

ISO-8859-1 Western
languages

US-ASCII (synonym: ASCII) Western
languages

windows-1252 Western
languages

EUC-jp (synonym: EUC) Japanese
Shift-JIS Japanese

SWIttsSpeak( ) may return the following error codes:

SWItts_NO_LICENSE There are no purchased licenses available

See also

“SWIttsSpeakEx( )” 
“SWIttsStop( )”



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/274

SWIttsSpeakEx( )
Mode

Asynchronous

Purpose

Sends a text URI or string to be synthesized. Call this function for
every text URI or string to synthesize.

SWIttsResult SWIAPI SWIttsSpeakEx(
SWIttsPort ttsPort,
const SWIttsSpeakData* speakData
);

Parameters

ttsPort The port handle returned by SWIttsOpenPortEx( ).
speakData Object containing the URI and fetch parameters, or a string.

Structures

The SWIttsSpeakData structure is defined as follows:

Typedef struct SWIttsSpeakData{
SSFT_U32 version;
const char* uri;
const SSFT_U8* data;
SSFT_U32 lengthBytes;
const char* contentType;
const VXIMap* fetchProperties;
VXIMap* fetchCookieJar;
}SWIttsSpeakData;

Structure members:

version Use the constant SWItts_CURRENT_VERSION defined
in SWItts.h.

uri URI to the text; contentType may be NULL. Pass NULL
when data is non-NULL. The URI may be one of the
following:
* HTTP/1.1 web server access, where the URL is

fetched by the Realspeak server:
http://myserver/mytext.txt

* Simple file access. For RealSpeak Telecom, the file is
resolved on the Realspeak server. For example:
file: /users/mytext. txt
/users/mytext.txt

data In-memory text; co n t en tType must be non-NULL. Pass
NULL when ur i is non-NULL.

lengthBytes Length of the in-memory text in bytes. Pass 0 when ur i is



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/275

non-NULL
contentType MIME content type to identify the text format. One of the

following:
* NULL: only valid when type is "uri".

Automatically determines the content type from
the URI. For http:// URIs, the MIME content
type returned by the web server is processed
using the rules that follow. For file: URIs, files
with a .dct extension are treated as W3C SSML
documents, and files with a .txt extension are
treated as ISO-8859-1 text documents, otherwise
an error results.

* text/*: Subtype xml text is assumed to be in W3C
SSML. If it is not, an error is returned. Other subtypes
are treated as “plain.”

* (RealSpeak Telecom only) application/ssml+xml:
indicates W3C SSML content. If W3C SSML input is
not indicated via contentType, it is pronounced as
plain

* Other: a SWItts_INVALID_MEDIATYPE error is
returned

fetchProperties (RealSpeak Telecom only) Optional VXIMap to
control Internet fetch operations (particularly the
base URI and fetch timeouts). May be NULL to use
defaults. These settings apply to the fetch of the top-
level document when uri is non-NULL, and also to
any fetches for <audio> elements within W3C SSML
documents (whether the W3C SSML document was
fetched by URI or provided in-memory).

fetchCookieJar (RealSpeak Telecom only) Optional VXIMap to
provide session or end-user-specific cookies for
Internet fetch operations, modified to return the
updated cookie state on success. May be NULL to
disable cookies (web server cookies are refused).

The only meaningful contentType parameter is "charset," which is
case-insensitive. (See www.iana.org/assignments/character-sets for more
details.) All other parameters are ignored. If "charset" is not specified,
it is assumed to be ISO-8859-1. An example of a valid contentType:

 text/plain;charset=iso-8859-1

The supported character sets vary by language:

Character set Languages Notes

UTF-8 All languages
UTF-16 All languages If the byte order mark is missing,

big-endian is assumed
wchar_t All languages “wchar_t" is not a MIME standard. 

It indicates that the input is in the
form of the operating system's
native wide character array (i.e.,
wchar_t *). Note that input length
must still be specified in bytes (i.e.,
the number of wide characters in
the input times the number of



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/276

bytes per wide character).
ISO-8859-1 Western

languages
US-ASCII (synonym: ASCII) Western

languages
windows-1252 Western

languages
EUC-jp (synonym: EUC) Japanese
Shift-JIS Japanese

SWIttsSpeakEx( ) may return the following error codes:

SWItts_INVALID_MEDIATYPE Unsupported MIME content type for
the speak data.

SWItts_INVALID_PARAMETER The ttsPort or speakData parameter is
NULL or invalid.

SWItts_MUST_BE_IDLE A speak operation is active.
SWItts_NO_LICENSE There are no purchased licenses

available.
SWItts_UNKNOWN_CHARSET Character set for speakData is invalid or

unsupported.
SWItts_URI_FETCH_ERROR Any error during URI access other than

SWItts_URI_NOT_FOUND and
SWItts_URI_TIMEOUT.

SWItts_URI_NOT_FOUND URI was not found (file does not exist or
the web server does not have a matching
URI).

SWItts_URI_TIMEOUT Timeout during web server URI access.

See also

SWIttsStop( )



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/277

SWIttsStop( )
Mode

Asynchronous

Purpose

Interrupts a call to SWIttsSpeak( ).

SWIttsResult SWIAPI SWIttsStop (
SWIttsPort ttsPort
);

Parameters

ttsPort The port handle returned by SWIttsOpenPortEx( ).
c)

Notes

When the currently active speak request is completely stopped and
the port is idle, the SWItts library calls the port's callback with a status
of SWItts_cbStopped. The callback is called with SWItts_cbStopped
only if the SWIttsStop( ) function returns with a SWItts_SUCCESS
result.
If there is no SWIttsSpeak( ) function in progress, or if a currently
active speak request is already stopping due to a previous call to
SWIttsStop( ), this function returns an error.

See also

SWIttsSpeak( )
SWIttsSpeakEx( )



RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter X/278

SWIttsTerm( )
Mode

Synchronous

Purpose

Closes all ports, terminates their respective threads, shuts down the
API library, and cleans up memory usage.

SWIttsResult SWIAPI SWIttsTerm(
SWIttsCallback* callback,
void* userData
);

Parameters

callback A pointer to a callback function that may receive
SWItts_cbError, SWItts_cbLogError, and/or
SWItts_cbDiagnostic messages during the SWIttsTerm(
) call.

userData User information passed back to callback.

Notes

If SWIttsTerm( ) closes one or more open TTS ports, you receive
SWItts_cbPortClosed messages in their respective callbacks.

See also

SWIttsInit( )



RealSpeak Telecom
Software Development Kit

Chapter XI
Speechify Email Pre-Processor

Programmer’s Guide



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/280

Speechify Email Pre-Processor
Introduction

Speechify™ is an older Text-To-Speech (TTS) system that was
combined with RealSpeak Solo 1.0 and RealSpeak Telecom 3.5 to
create the best-of-breed RealSpeak product you are using now. This
chapter is written for Speechify 2.1 and 3.0 application developers
who previously used the email pre-processor library of those
Speechify products, and wish to continue to use this same email
preprocessing solution with the converged RealSpeak products.

If you have not previously used the Speechify 2.1 or 3.0 e-mail pre-
processor, however, you should not use this email pre-processor.
Instead, you should use the email pre-processor that is built-in to the
RealSpeak product. See the RealSpeak User’s Guides for more 
information.

 Programming environment.

This paragraph gives an overview of features, how to use the e-mail
pre-processor API, and information about the e-mail substitution
dictionary, used to specify and customize text substitutions. For a
detailed explanation of the API functions, see “API Reference”. 

Features

The Speechify E-mail Pre-processor is provided as a dynamic linked
library (.dll) on NT and a static library (.a) on UNIX. It has the
following features:

 Support for standard format e-mail.
 A powerful e-mail substitution dictionary.
 Thread-safe API functions.

The Speechify E-mail Pre-processor only processes plain text e-mail
messages. It does not process e-mail messages that are in HTML
format or are encoded (e.g., base64). The pre-processor does provide
the facility to support partially processed email messages, as well as
MIME format. This allows the pre-processor to process e-mail
messages that have been pre-filtered for HTML tags (or any other
text format that the application chooses to handle). A full description
of this is provided in chapter “Functionality of the E-mail Pre-
processor” 



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/281

The pre-processor has a substitution dictionary that allows the user to
specify the way strings are spoken by RealSpeak. Entries in the
dictionary tell the pre-processor to substitute certain pieces of text
with other text. For example, you may want to replace“BTW” with 
“by the way”. Dictionary entries may apply to the whole message or to
specific sections of the message, depending on the scope that the user
has specified. A full description of the dictionary is provided in
chapter “Using the E-mail Substitution Dictionary”.

Order of API calls
There are just three API functions in the e-mail pre-processor. You
must call them in this order.

 SWIemailInit( ) initializes the e-mail preprocessor library
which includes loading the substitution dictionary and
loading it into memory

 SWIemailProcess( ) processes a single e-mail message in
the form of a null terminated text string.

 SWIemailTerm( ) frees resources needed by the library.

Pseudo-code for an offline e-mail pre-processor may look like this:

SWIemailInit()
while (more messages to process)

SWIemailProcess(message n)
Save(message n)
SWIemailTerm()

Pseudo-code for an application that processes and speaks e-mail at
runtime may look like this:

SWIemailInit()
SWIttsInit()
SWIttsOpenPort()
while (more TTS requests to make)

SWIemailProcess ()
SWIttsSpeak()

SWIttsClosePort()
SWIttsTerm()
SWIemailTerm()

You only need to call SWIemailInit( ) and SWIemailTerm( ) once per
process, and you need to call SWIemailProcess( ) once per message.



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/282



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/283

Functionality of the E-mail
Pre-Processor

This paragraph explains the types of input that the Speechify E-mail
Pre-processor handles, how it processes the messages, and the modes
that the application can take advantage of at run time. There is
mention of MIME (Multipurpose Internet Mail Extensions) format
messages below. A MIME format message is one that conforms to the
Internet standards defined in RFCs 822, 2045 and 2046.
(http://www.ietf.org/rfc.html)

In This Paragraph
 Supported message formats
 Default behavior
 Modes



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/284

Supported message formats
The Speechify E-mail Pre-processor deals with messages in full
MIME format, or partially processed messages. It only processes
plain text e-mail messages. It does not process e-mail messages that
are in HTML format or that are encoded (e.g., base64), therefore
HTML/XML tags or encoded text should be filtered out of the
message or decoded before a call to SWIemailProcess( ). If not,
RealSpeak reads the tags or encoded text. If you preprocess a message
with another application (e.g., to parse or filter HTML tags), and the
output is not in MIME format, then the e-mail preprocessor can still
deal with the message. The only assumption is that there is an empty
line separating the header from the body of the message. Below is an
example of a partially processed e-mail.

From: "Dave Burns" <david.burns@scansoft.com>
To: "Daniel Faulkner" <daniel.faulkner@scansoft.com>
Subject: RE: No con call
Date: Mon, 27 Nov 2000 15:44:58 -0500

This is a partially processed e-mail

If a message is passed into the preprocessor in MIME format, then
each MIME boundary is located, and its content type is identified. If
there are attachments to the message, the listener is notified what the
media type and file name are (e.g., “There is an audio file called 
hello.wav attached to the message”). File attachments can only be 
identified if the message is passed in MIME format. Below is an
example of a MIME format message with a text file attachment.

From andrew.lowry@scansoft.com Fri Nov 24 04:04:16 2000
Received: from [63.113.17.11] by scansoft.com (3.2) with ESMTP id
MBBE7A428003A4004315F3F71110BB50E0; Fri Nov 24 04:03:52
2000
Received: from vishnu.scansoft.com (mailhost.scansoft.com
[206.234.64.17]) by scansoft.com (8.9.3+Sun/8.9.3) with ESMTP id
HAA21041 for < dan.faulkner@scansoft.com>; Fri, 24 Nov 2000
07:05:59 -0500 (EST) Received: from scansoft.com ([10.6.70.30])
by vishnu.scansoft.com (8.9.3+Sun/8.9.3) with ESMTP id
HAA00745
for <dan.faulkner@scansoft.com>; Fri, 24 Nov 2000 07:03:50 -0500
(EST) Message-ID: <3A1E5925.11C0CC@scansoft.com>
Date: Fri, 24 Nov 2000 07:03:49 -0500
From: Andrew Lowry <andrew.lowry@scansoft.com>
X-Mailer: Mozilla 4.7 [en] (WinNT; I)
X-Accept-Language: en
MIME-Version: 1.0
To: dan.faulkner@scansoft.com



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/285

Subject: here it is!
Content-Type: multipart/mixed;
boundary="D9A5530EC 68939F7E9BE4970"

This is a multi-part message in MIME format.
D9A5530EC 68939F7E9BE4970 Content-Type: text/plain;
charset=us-ascii Content-Transfer-Encoding: 7bit

Here is the file you asked for. Drew
D9A5530EC 68939F7E9BE4970 Content-Type: text/plain;
charset=us-ascii; name="dan.txt"
Content-Transfer-Encoding: 7bit
Content-Disposition: inline;
filename="dan. txt"
blah blah blah blah blah...
D9A5530EC 68939F7E9BE4970

Default behavior
For either message format, the Speechify E-mail Pre-processor
identifies the message header and message body, and tries to identify
address/signature blocks (although this can be difficult if users employ
arbitrary formatting for their address/ signature blocks).

Header processing

Discarding header lines

All lines in the header are discarded except the from, date, and subject
lines. Each header line is terminated with a period. The expansions of
the From, Date and Subject lines are specified in the substitution
dictionary. The date in the date line is expanded. The year and time are
discarded. For example:

Input Preprocessed text
Date: Tue, 24 Oct 2000 07:03:49–0500 Your message arrived on Tuesday,

twenty fourth October



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/286

Reading From lines

If the From line contains an e-mail address and a real name, the real
name is read:

Input Preprocessed text
From: Dan Faulkner
dan.faulkner@scansoft.com

Your message is from Dan Faulkner

Subject line abbreviations

In the subject line, abbreviations like FW and RE can be expanded
using the substitution dictionary, e.g.:

Input Preprocessed text
Subject: RE: Questions from
customers

The subject line says the message is a reply
about questions from customers

Here “Subject:” was replaced withThe subject line says, and “RE:” was 
replaced with the message is a reply about.

When expanding the RE: and FW: strings, note that they frequently
occur multiple times in a single subject line. For this reason, you
should either expand them to something that makes sense when read
more than once, or add multiple occurrences to the substitution
dictionary, and define a single expansion for them, e.g.:

 RE:, the message is a reply
 FW: the message was forwarded
 FW:FW: the message was forwarded twice
 RE:FW:FW: this message is a reply to a message that was

forwarded twice.

Body processing

Discarding data

In the message body, UUencoded data and octal data are skipped.
Within the body, an empty line is considered to be a paragraph break,
and if the last line of the paragraph doesn’t end with a period, then a 
period is inserted, e.g.:

Original text Pre-processed text
Hi Hi. How are you?
How are you?



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/287

Non-alphanumeric, non-space strings of more than three characters
are deleted if they haven’t been matched and substituted by the e-mail
substitution dictionary. In this example, the lines of dashes have been
deleted, so that the listener does not hear “dash dash dash dash 
dash…”:

Original text Pre-processed text
---------------------------------------
All or some of this message may
be privileged information. If you
are not the intended recipient,
please discard this message and
any attachments now

All or some of this message may be privileged
information. If you are not the intended
recipient, please discard this message and any
attachments now

Multiple punctuation marks

Multiple punctuation marks resolve to a single punctuation mark, e.g.:

Original text Pre-processed text
What!???????????!!!! What!

Embedded e-mail messages

The listener is notified of embedded e-mail messages (only the from
line is read from embedded messages). The listener is also notified at
the beginning and end of portions of text that have been indented
with greater than (>), e.g.:

Original text Pre-processed text
>What are you doing on This next section of text is indented.
Thursday? What are you doing this Thursday?
I don’t know yet. That’s the end of the section that was 

indented.
I don’t know yet.

These notifications are specified, and can therefore be customized, in
the e-mail substitution dictionary. (See chapter “Using the E-mail
Substitution Dictionary” for details.)



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/288

Signature processing

The Internet standard for indicating that a signature/address block is
next in the text is the sequence --\n. If this sequence is found in the
message body, the preprocessor assumes that the following text is an
address block, until the next empty line. For example:

--

tel. +44 0803 123456 http://www.scansoft.com

In addition to this assumption, there is a heuristic process employed
that looks for the following strings at the beginning of a line:

 ph
 tel
 fax
 pgr
 www
 mail
 http
 work
 home
 email
 e-mail

If any of these are found as the first alphabetic strings on two
consecutive lines, then until the next empty line, the text is treated as
an address block, e.g.:

Original text Preprocessed text
+++++++++++++++++++++++ Telephone, +44 0803 123456.
++++ Tel.+44 0803123456 Fax, +44 0803 654321.
+ Fax +44 0803 654321 www.scansoft.com
+www.scansoft.com
+
+++++++++++++++++++++++
+++++++

MIME format

File attachments and media types are only identifiable in MIME format
messages. The user can define what should be spoken when a file
attachment is found (e.g., “There is an attachment to this message”), 



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/289

and the name of the file is read (e.g., “expenses.xls”). Otherwise, 
MIME messages are treated the same as partially processed messages.

Modes
You can control the behavior of the e-mail preprocessor through the
use of modes. The user can set the following modes using the
SWIemailProcess( ) function. (See chapter “API Reference” for more 
info about this function)

Mode Function
DATE Read the Date line from the header
FROM Read the From line from the header
SUBJECT Read the Subject line from the header
BODY Read the message body
ADDRESS Read any address/signature blocks
MIME_FORMAT The message is in MIME format

At least one of DATE, FROM, SUBJECT, BODY, ADDRESS must
be selected. If the message is in MIME format, then
MIME_FORMAT should be combined with the other selections.
Modes are combined by using bitwise OR. Here are some examples:

Mode Function
DATE|BODY Read the date line and the message body
BODY|ADDRESS Read the body and any address/signature blocks
FROM|SUBJECT Read the from line and the subject line

Thus, for example, if you don’t want to hear the address/signature 
blocks from a message, don’t select ADDRESS.

MIME_FORMAT deserves special mention because it specifies the
input rather than the desired output. If you enter a multipart MIME
format message and you don’t specify MIME_FORMAT, the speech 
output contains the MIME section boundaries, making it difficult to
follow.

If you enter a message that is not in MIME format, and you do
specify MIME_ FORMAT, the message may be delivered in an
unexpected way. (For example: the body may be skipped altogether
and encoded data from file attachments is read out character by
character.)

If there are no attachments, the message is read identically whether
MIME_ FORMAT is on or not.



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/290

Using the E-mail Substitution
Dictionary

This paragraph explains the layout and use of the e-mail substitution
dictionary.

In This Paragraph
 Dictionary entries
 Comments and escapes
 Notifications

File format
The e-mail substitution dictionary file is an ASCII text file with one
entry per line. A default named “Email.dic” is supplied in the SDK’s 
bin directory. You may supplement that or replace it entirely. (See
chapter “API Reference” for more info)

The dictionary is split into five sections:

 Header Entries for substitutions that should only take
place in the header

 Body Entries for substitutions that should only take place
in the message body

 Address Entries for substitutions that should only take
place in the address block

 Mime Entries for substitutions that should only take place
in a Mime section boundary

 Global Entries for substitutions that should take place
everywhere

The user can decide to expand the same string differently depending on
whether it is found in the header or the body, or only expand a string
if it is found in a specific section of the message, and ignore it if it
appears anywhere else.

The entries in the substitution dictionary do not need to be sorted.



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/291

Dictionary entries
Dictionary entries are of the form

TARGET,SUBSTITUTION

The target is the string to be replaced, and the substitution is the string
to replace the target. The target and the substitution are separated by a
comma, e.g.:

RE:,Reply

This entry indicates that the e-mail pre-processor replaces the string
RE: with the string Reply . The entries have the same syntax for every
section. If an invalid entry is passed in, it is ignored and an error
message is logged to stderr. An invalid entry is a line that does not
contain a comma and at least one character on each side of the
comma (i.e., a target and a substitution).

A target can be any string of any sequence of characters. Multiple
words and tokens separated by white spaces are permitted. For
example:

George Bush, the former president George W. Bush, the new
president

The e-mail pre-processor replaces the longest string possible from left
to right. For example, given the hypothetical dictionary entries:

John, I
John Smith, my grandfather
John Smith Jr., my father

Input string Dictionary output
John Smith Jr. entered the room. my father entered the room.

Although both John and John Smith match the input, John Smith Jr . is
the longest match.

When a target has been identified, it is replaced by everything in the
substitution. Be careful not to add a space at the end of the substitution
by mistake, as it may have consequences for subsequent processing.

For example, suppose we had the following dictionary entry, and
accidentally placed a space after the expansion:



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/292

SSFT,scansoft

In this case, a web address www.ssft.com would be expanded to:
www.scansoft .com.

This spurious space character would prevent the web address from
being processed correctly at a later stage–it would be read as www dot
ScanSoft (pause)com instead of www dot ScanSoft dot com.

By default, the substitution dictionary entries are matched case-
insensitively. If you want an entry to be matched case-sensitively, you
should append an asterisk to the target. For example, given these
dictionary entries:

Tue,Tuesday Wed*,Wednesday

Input string Dictionary output
The couple wed on tue. The couple wed on Tuesday.
The couple wed on Wed. The couple wed on Wednesday.

If you want to use an asterisk as the last character of a genuine
substitution, you must escape it, by preceding it with a backslash, for
example, to match the input gold* (case insensitive), use this
dictionary entry:

gold\*,gold star

Comments and escapes
The e-mail substitution dictionary supports comments. Any line that
begins with# is taken as a comment. If you want to use a hash or a
comma as part of the TARGET string, escaped it with a backslash.
Therefore, the backslash must be escaped too:

Original text Pre-processor behavior
####This is a comment Not loaded into memory
\#3,Number Three Replace #3 with Number Three
Mon\,,Monday Replace Mon, with Monday
C:\\Temp, my temp drive Replace C:\Temp with my temp dr ive

Notifications
Certain events can only be spotted inside the code (i.e., a simple
dictionary look-up sometimes is not enough). Examples are:



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/293

 UUencoded data
 octal data
 start of indented text
 end of indented text
 end of the message

When the e-mail pre-processor spots these, it inserts an upper case
constant into the text before substitutions are performed. The
constants that are inserted are self explanatory. They are:

Constant Meaning
!UUENCODED_DATA_NOTIFY! UU encoded data found
!OCTAL_DATA_NOTIFY! Octal data found
!INDENT_NOTIFY! Start of indented text found
!END_OF_INDENT_NOTIFY! End of indented text found
!END_MSG_NOTIFY! End of message found

The following constants are also inserted when file attachments are
found in MIME format messages:

 !IMAGE_FILE_NOTIFY!
 !AUDIO_FILE_NOTIFY!
 !APPLICATION_FILE_NOTIFY!
 !VIDEO_FILE_NOTIFY!
 !TEXT_FILE_NOTIFY!

Specify substitution text for these in the substitution dictionary. (The
supplied Email.dic file contains appropriate defaults.) This means you
can define what you want RealSpeak to say when any of the above
events occur. If you want it to say nothing, don’t put anything after 
the delimiter in the dictionary; e.g., if you don’t want the listener to be 
notified that, say, the end of a message had been reached, change the
substitution dictionary entry from this:

!END_MSG_NOTIFY!*,That’s the end of the message.

To this:

!END_MSG_NOTIFY!*,

If you remove these constants from the dictionary, the constant
names are deleted by the e-mail pre-processor. This prevents the
internal notifications from being read out loud.



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/294

Here is an example of a legal dictionary.

\!HEADER ENTRIES
Date:,The message arrived on
From:,The message is from
FW:,the message was forwarded to you, and it’s about
RE:, the message is a reply, and it’s about

\!MIMEPART ENTRIES

######## RealSpeak internal ########
!IMAGE_FILE_NOTIFY!,There’s an image file attached. 
!AUDIO_FILE_NOTIFY!,There’s an audio file attached. 
!APPLICATION_FILE_NOTIFY!,There’s an application attached.
!VIDEO_FILE_NOTIFY!,There’s a video file attached. 
!TEXT_FILE_NOTIFY!,There’s a text file attached.

######## Generic ########
.txt, dot text.
.doc, dot doc.
\!BODY ENTRIES
\!GLOBAL ENTRIES

######## RealSpeak internal ########
!UUENCODED_DATA_NOTIFY!,I’ll have to skip the next section. 
!OCTAL_DATA_NOTIFY!,I’ll have to skip the next section.
!INDENT_NOTIFY!,This next section of text is indented.
!END_OF_INDENT_NOTIFY!,That’s the end of the indented section.
!END_MSG_NOTIFY!,That’s the end of the message.

######## Generic ########
ASAP,as soon as possible
BTW,by the way
FYI,for your information,
WRT,with regard to



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/295

API Reference
All API function prototypes, types, error codes, and constants are
located in the header file SWIEmail.h.

In This Paragraph
 Calling convention
 Result codes
 SWIemailInit( )
 SWIemailProcess( )
 SWIemailTerm( )

Calling convention
The calling convention is dependent on the operating system, and is
defined in the SWIEmail.h header file.

Under NT:

#define SWIAPI __stdcall

Under Unix:

#define SWIAPI



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/296

Result codes
The following result codes are defined in the enum SWIemailResult
in SWIEmail.h.

Code Description
SWIemail_SUCCESS The function completed

successfully

SWIemail_BAD_FILE_FORMAT The substitution dictionary
doesn’t contain all 5
section headings

SWIemail_EMPTY_MESSAGE The input string is empty
SWIemail_ERROR There was an error in the API.
SWIemail_FATAL_EXCEPTION (NT only.) A crash occurred

within the SWIemail library.
You should shut down the
application.

SWIemail_FILE_NOT_FOUND Unable to locate the substitution
dictionary

SWIemail_MEM_REQUEST The output string is bigger than
the input buffer

SWIemail_UNINITIALIZED SWIEmailProcess( ) was called
before SWIEmailInit( )



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/297

SWIemailInit( )
Mode: Synchronous

Initialize the substitution dictionary.

SWIemailResult SWIAPI SWIemailInit(const char *FilePath)

Parameter Description
FilePath Path to the substitution dictionary

Notes

This must be the first API function called for the e-mail pre-
processor.

If you pass in your own FilePath, you can call the dictionary whatever
you want. If FilePath is NULL, then SWIemailInit( ) checks for the
existence of the environment variable SWITTSSDK. If it exists,
SWIemailInit( ) tries to load Email.dic from the path
SWITTSSDK/bin. If the variable doesn’t exist, SWIemailInit( ) tries
to load Email.dic from the current working directory.

Return code Meaning for SWIemailInit( )

SWIemail_SUCCESS SWIemailInit()returned
successfully

SWIemail_BAD_FILE_FORMAT The file does not contain the
section headings for the
HEADER, BODY, ADDRESS,
MIMEPART, and GLOBAL
sections.

SWIemail_ERROR Error opening the file
SWIemail_FILE_NOT_FOUND SWIemailInit() did not find a file

at all



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/298

SWIemailProcess( )
Mode: Synchronous

Processes an e-mail message.

SWIemailResult SWIAPI SWIemailProcess(const char *Message, int
*BufferSize, unsigned char Modes)

Parameter Description
Message The e-mail message as a null-terminated

string. The output is copied into this
buffer.

BufferSize Size of the input buffer. Its contents are
changed if the output string is bigger then
the input buffer.

Modes Modes through combinations of the mode
variables defined in SWIEmail.h.(See
“Modes” in chapter “ )

Return code Meaning for
SWIemailProcess( )

SWIemail_SUCCESS SWIemailProcess() returned
successfully

SWIemail_EMPTY_MESSAGE Input string is empty.
SWIemail_ERROR Memory error in the API.
SWIemail_MEM_REQUEST The output string is longer than

the input buffer, and the value of
the contents of BufferSize is
changed to the required size.

SWIemail_UNINITIALIZED SWIemailProcess()called before
SWIemailInit( ).

Notes

The parameter BufferSize tells the function how long the input buffer
is. If the function returns SWIemail_MEM_REQUEST, the
application should reallocate the input buffer to the appropriate size
and call SWIemailProcess( ) again.



Speechify Email Pre-processor

Chapter XI

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Chapter XI/299

SWIemailTerm( )
Mode: Synchronous

Frees resources used by the preprocessor library.

SWIemailResult SWIAPI SWIemailTerm( )

SWIemailTerm( ) must be the last function called. If it is called before
calling SWIemailInit( ), it returns SWIemail_UNINITIALIZED. It
returns SWIemail_ SUCCESS on completion.



RealSpeak Telecom
Software Development Kit

Appendices

Programmer’s Guide



TTSPARAM member values

Appendix A

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix A/301

Appendices
Appendix: TTSPARM member values

The following table shows the list of acceptable values for each
member in the TTSPARM structure specified when a RealSpeak
engine instance is initialized via the TtsInitialize(Ex) function:

TTSPARM member Acceptable values

nLanguage TTS_LANG_US_ENGLISH
TTS_LANG_SPANISH
TTS_LANG_FRENCH
TTS_LANG_NETHERLANDS_DUTCH
TTS_LANG_DUTCH
TTS_LANG_BRITISH_ENGLISH
TTS_LANG_GERMAN
TTS_LANG_ITALIAN
TTS_LANG_JAPANESE
TTS_LANG_KOREAN
TTS_LANG_EGYPTIAN_ARABIC
TTS_LANG_MANDARIN_B5
TTS_LANG_BRAZILIAN_PORTUGUESE
TTS_LANG_RUSSIAN
TTS_LANG_MEXICAN_SPANISH
TTS_LANG_BELGIAN_DUTCH
TTS_LANG_SWEDISH
TTS_LANG_NORWEGIAN
TTS_LANG_MANDARIN_GB
TTS_LANG_AUSTRALIAN_ENGLISH
TTS_LANG_CANADIAN_FRENCH
TTS_LANG_CANTONESE_B5
TTS_LANG_CANTONESE_GB
TTS_LANG_DANISH
TTS_LANG_PORTUGAL_PORTUGUESE
TTS_LANG_POLAND_POLISH
TTS_LANG_ARMENIA_ARMENIAN
TTS_LANG_UKRAINIAN
TTS_LANG_GREEK
TTS_LANG_VIETNAMESE
TTS_LANG_MALAY



TTSPARAM member values

Appendix A

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix A/302

TTSPARM member Acceptable values
TTS_LANG_PAKISTAN_URDU
TTS_LANG_INDONESIA_BAHASA
TTS_LANG_IRAN_FARSI
TTS_LANG_BELARUSIAN
TTS_LANG_CZECH
TTS_LANG_HUNGARIAN
TTS_LANG_INDIA_TAMIL
TTS_LANG_THAILAND_THAI
TTS_LANG_TURKISH
TTS_LANG_TAIWANESE
TTS_LANG_INDIA_HINDI
TTS_LANG_TAIWAN_MANDARIN_B5
TTS_LANG_TAIWAN_MANDARIN_GB
TTS_LANG_BELGIAN_FRENCH
TTS_LANG_INDIAN_ENGLISH

nOutputType TTS_LINEAR_16BIT
TTS_MULAW_8BIT
TTS_ALAW_8BIT

nFrequency TTS_FREQ_8KHZ
TTS_FREQ_11KHZ
TTS_FREQ_22KHZ

nVoice TTS_RS_VOICE_FEMALE
TTS_RS_VOICE_MALE
TTS_3000_VOICE_FEMALE
TTS_3000_VOICE_MALE
TTS_RS_VOICE_FEMALE2
TTS_RS_VOICE_MALE2
TTS_RS_VOICE_FEMALE3
TTS_RS_VOICE_MALE3
TTS_VOICE_USE_STRING



RealSpeak API Function Directory

Appendix B

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix B/303

Appendix: RealSpeak API Function Directory
The following table shows an alphabetical list of the RealSpeak v4
API functions. The RealSpeak v3.5 functions for which exists a new
variant are also supported, but their name is put in-between brackets.

Use this Function… To Perform this Task…

TtsCreateEngine Create a TTS engine instance on the
server1.

TtsDisableUsrDictEx
(TtsDisableUsrDict)

Disable a dictionary instance for a
channel.

TtsDisableUsrDictsEx Disable all dictionary instances for a
channel

TtsEnableUsrDictEx
(TtsEnableUsrDict)

Enable a dictionary instance for a
channel.

TtsGetG2PDictList Get the list of custom G2P dictionaries
on the system for the current language.

TtsGetG2PDictTotal Retrieve the total number of custom
G2P dictionaries on the system for the
current language.

TtsGetParams Get the values of a parameter. list

TtsGetParam Get the value of a parameter.

TtsInitializeEx
(TtsInitialize)

Create an instance of the TTS engine.

TtsLoadG2PDictList Load a list of G2P dictionaries
TtsLoadUsrDictEx
(TtsLoadUsrDict)

Load a user dictionary to be used by the
engine.

TtsProcessEx (TtsProcess) Convert input data (text) into output
data (speech).

TtsRemoveEngine Remove an instance of an engine from
the server.

TtsSetParams Set the values for multiple parameters.

TtsSetParam Set the values for the document type,
rate, and volume.

TtsStop Stops the Text-To-Speech process.

TtsUninitialize Free all resources allocated to an engine.

TtsUnloadG2PDictList Unload a list of G2P dictionaries

TtsUnloadUsrDictEx Unload a dictionary from memory; frees

1 This is no longer the case with v4; for the moment it is a dummy function, reserved for
future use.



RealSpeak API Function Directory

Appendix B

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix B/304

Use this Function… To Perform this Task…
(TtsUnloadUsrDict) memory resources.



Running a TTS server as a service (Windows only)

Appendix C

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix C/305

Appendix: Running a TTS server as a service
(Windows only)

A service in Microsoft® Windows is a program that runs whenever
the computer is running the operating system. It does not require a
user to be logged on. For more information on how to run and
configure Windows services, refer to the Microsoft documentation
that comes with your operating system.

Included with the Telecom RealSpeak/Host SDK is a
ttsserver_service.exe, which is a version of ttsserver.exe that can run
as a Windows service.

If ttsserver_service is not already registered as a service, then you can
do so with the following command:

ttsserver_service–i

To unregister, use the–u parameter:

ttsserver_service–u

To work properly, the TTS server must be configured using
$SSFTTTSSDK/config/ttsserver.xml. For information on that
configuration file, see the“Configuration Files” section in the “User 
Configuration” chapter..



Port Density Simulator

Appendix D

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix D/306

Appendix: Port density simulator
The port density simulator can help a customer identify the hardware
needed in order to run a certain amount of RealSpeak channels in
real-time. Real-time means that any generated PCM, on any of the
active channels, can be spoken as soon as possible without any
interruptions.

The simulator starts out using the input parameters given on the
command line. In its simplest form a thread will be created and will
process the requested language, output type, voice, output buffer size
and input text.

When processing, the E-mail pre-processor is not enabled and no
user dictionaries are loaded. Immediately when the thread finishes a
result will be returned reporting if the current thread was executed in
real-time or not. If it took less time to generate the PCM then it
would take time to speak the text then it's considered real-time.

The simulator will continue to increase the amount of active
threads, one by one, until the system reaches a point were the overall
system is not real-time anymore. This point is reached when the
average thread isn't real-time. A real-time time index (RTI) is
attached to each executed thread and a number below 100 means not
real-time and a number equal or greater then 100 as real-time. At
different steps of the program data will be collected in a
formatted output file (name is user-defined).

The generated output file is a comma-separated file that can be
imported directly into a spreadsheet.

Syntax:

Usage: density.exe LangId VoiceId OutType StartAt# OutSize
LibDir InName OutName

Where:
LangId: The language define from lh_ttsso.h
VoiceId: The voice define from lh_ttso.h
OutType: The output type define from lh_ttso.h
StarAt#: Sets the minimum amount of active threads (min 1)
OutSize: Sets the output buffer size (must be even)
LibDir: Points to the engine directory
InName: Name of the input text file
OutName: Name of the output file (.csv file)

Example: density.exe 0 0 0 1 2048 ./speech ./input.txt ./output.csv



Copyright and Licensing for third party software

Appendix E

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix E/307

Appendix: Copyright and Licensing for third party
software

The Telecom RealSpeak/Host SDK utilizes certain open source
software packages. Copyright and licensing information for these
packages are included in this section.

ADAPTIVE Communication Environment (ACE)

Copyright and Licensing Information for ACE(TM) and TAO(TM)

[1]ACE(TM) and [2]TAO(TM) are copyrighted by [3]Douglas C.
Schmidt and his [4]research group at [5]Washington University,
Copyright (c) 1993-2001, all rights reserved. Since ACE and TAO are
[6]open source, [7]free software, you are free to use, modify, and
distribute the ACE and TAO source code and object code produced
from the source, as long as you include this copyright statement along
with code built using ACE and TAO.

In particular, you can use ACE and TAO in proprietary software and
are under no obligation to redistribute any of your source code that is
built using ACE and TAO. Note, however, that you may not do
anything to the ACE and TAO code, such as copyrighting it yourself
or claiming authorship of the ACE and TAO code, that will prevent
ACE and TAO from being distributed freely using an open source
development model.

ACE and TAO are provided as is with no warranties of any kind,
including the warranties of design, merchantability and fitness for a
particular purpose, noninfringement, or arising from a course of
dealing, usage or trade practice. Moreover, ACE and TAO are
provided with no support and without any obligation on the part of
Washington University, its employees, or students to assist in its use,
correction, modification, or enhancement. However, commercial
support for ACE and TAO are available from [8]Riverace and
[9]OCI, respectively. Moreover, both ACE and TAO are Y2K-
compliant, as long as the underlying OS platform is Y2K-compliant.

Washington University, its employees, and students shall have no
liability with respect to the infringement of copyrights, trade secrets
or any patents by ACE and TAO or any part thereof. Moreover, in no
event will Washington University, its employees, or students be liable
for any lost revenue or profits or other special, indirect and
consequential damages.

The [10]ACE and [11]TAO web sites are maintained by the
[12]Center for Distributed Object Computing of Washington
University for the development of open source software as part of the
[13]open source software community. By submitting comments,



Copyright and Licensing for third party software

Appendix E

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix E/308

suggestions, code, code snippets, techniques (including that of usage),
and algorithms, submitters acknowledge that they have the right to
do so, that any such submissions are given freely and unreservedly,
and that they waive any claims to copyright or ownership. In addition,
submitters acknowledge that any such submission might become part
of the copyright maintained on the overall body of code, which
comprises the [14]ACE and [15]TAO software. By making a
submission, submitter agrees to these terms. Furthermore, submitters
acknowledge that the incorporation or modification of such
submissions is entirely at the discretion of the moderators of the open
source ACE and TAO projects or their designees.

The names ACE (TM), TAO(TM), and Washington University may
not be used to endorse or promote products or services derived from
this source without express written permission from Washington
University. Further, products or services derived from this source
may not be called ACE(TM) or TAO(TM), nor may the name
Washington University appear in their names, without express written
permission from Washington University.

If you have any suggestions, additions, comments, or questions,
please let [16]me know.

[17]Douglas C. Schmidt

Back to the [18]ACE home page.

References

1. http://www.cs.wustl.edu/~schmidt/ACE.html
2. http://www.cs.wustl.edu/~schmidt/TAO.html
3. http://www.cs.wustl.edu/~schmidt/
4. http://www.cs.wustl.edu/~schmidt/ACE-members.html
5. http://www.wustl.edu/
6. http://www.opensource.org/
7. http://www.gnu.org/
8. http://www.riverace.com/
9. file://localhost/home/cs/faculty/schmidt/.www-

docs/www.ociweb.com
10. http://www.cs.wustl.edu/~schmidt/ACE.html
11. http://www.cs.wustl.edu/~schmidt/TAO.html
12. http://www.cs.wustl.edu/~schmidt/doc-center.html
13. http://www.opensource.org/
14. http://www.cs.wustl.edu/~schmidt/ACE-obtain.html
15. http://www.cs.wustl.edu/~schmidt/TAO-obtain.html
16. mailto:schmidt@cs.wustl.edu
17. http://www.cs.wustl.edu/~schmidt/
18. file://localhost/home/cs/faculty/schmidt/.www-

docs/ACE.html



Copyright and Licensing for third party software

Appendix E

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix E/309

Apache Group

The Apache Software License, Version 1.1 Copyright (c) 1999 The
Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The end user documentation included with the redistribution, f
any, must include the following acknowledgment: "This product
includes software developed by the Apache Software Foundation
(http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party
acknowledgments normally appear.

4. The names "Xerces" and "Apache Software Foundation" must not
be used to endorse or promote products derived from this software
without prior written permission. For written permission, please
contact apache@apache.org.

5. Products derived from this software may not be called "Apache",
nor may "Apache" appear in their name, without prior written
permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.
========================================



Copyright and Licensing for third party software

Appendix E

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix E/310

This software consists of voluntary contributions made by many
individuals on behalf of the Apache Software Foundation and was
originally based on software copyright (c) 1999, International
Business Machines, Inc., http://www.ibm.com. For more
information on the Apache Software Foundation, please see
<http://www.apache.org/>.

The Flite Speech Synthesis System

Language Technologies Institute
Carnegie Mellon University
Copyright (c) 1999-2003
All Rights Reserved.
http://cmuflite.org

Dinkumware C++ Library for Visual C++

Developed by P.J. Plauger
Copyright (c) 1992-2000 by P.J. Plauger
Dinkumware, Ltd.
398 Main Street
Concord MA 01742

RSA Data Security, Inc. MD5 Message-Digest Algorithm

Copyright (c) 1991-1992, RSA Data Security, Inc. Created 1991. All
Rights
Reserved.

ICU

http://oss.software.ibm.com/icu/
COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2003 International Business Machines
Corporation and others
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of
the Software and that both the above copyright notice(s) and this
permission notice appear in supporting documentation.



Copyright and Licensing for third party software

Appendix E

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix E/311

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT
WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT
OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY
DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder
shall not be used in advertising or otherwise to promote the sale, use
or other dealings in this Software without prior written authorization
of the copyright holder.

--------------------------------------------------------------------------------
All trademarks and registered trademarks mentioned herein are the
property of their respective owners.

PCRE

PCRE LICENCE
-----------------------

PCRE is a library of functions to support regular expressions whose
syntax and semantics are as close as possible to those of the Perl 5
language.
Release 5 of PCRE is distributed under the terms of the "BSD"
licence, as specified below. The documentation for PCRE, supplied in
the "doc" directory, is distributed under the same terms as the
software itself.

Written by: Philip Hazel <ph10@cam.ac.uk>

University of Cambridge Computing Service,
Cambridge, England. Phone: +44 1223 334714.

Copyright (c) 1997-2004 University of Cambridge
All rights reserved.

Redistribution and use in source and binary forms, with or without



Copyright and Licensing for third party software

Appendix E

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix E/312

modification, are permitted provided that the following conditions are
met:

 Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.

 Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

 Neither the name of the University of Cambridge nor the
names of its contributors may be used to endorse or promote
products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.



RealSpeak Languages

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix F/313

Appendix: RealSpeak Languages
The following table shows a list of all the RealSpeak languages, sorted
according to the ISO language code. It also specifies the 3-letter
RealSpeak language code (which is used to specify the language in the
header of user dictionaries and rulesets) and the native character set.
Note that for each given language, TTS input encoded in another
supported (coded) character set is converted to the native character
set for that language before it is processed internally. See the
RealSpeak User’s Guide for each language for more details.



RealSpeak Languages

Appendix F

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix F/314

Language
name

ISO
language
code

RealSpeak
language code

Native
character set

Danish da-DK DAD windows-1252
Swiss German de-CH GEC windows-1252
German de-DE GED windows-1252
Australian
English

en-AU ENA windows-1252

British English en-GB ENG windows-1252
Indian English en-IN ENI windows-1252
American
English

en-US ENU windows-1252

Spanish es-ES SPE windows-1252
Mexican Spanish es-MX SPM windows-1252
Basque eu-ES BAE windows-1252
Belgian French fr-BE FRB windows-1252
Canadian French fr-CA FRC windows-1252
Swiss French fr-CH FNC windows-1252
French fr-FR FRF windows-1252
Swiss Italian it-CHC ITC windows-1252
Italian it-IT ITI windows-1252
Japanese ja-JP JPJ Shift-JIS
Korean ko-KR KOK windows-949
Korean kr-KR KOK windows-949
Belgian Dutch nl-BE DUB windows-1252
Dutch nl-NL DUN windows-1252
Norwegian no-NO NON windows-1252
Polish pl-PL PLP windows-1250
Brazilian
Portuguese

pt-BR PTB windows-1252

Portuguese pt-PT PTP windows-1252
Russian ru-RU RUR windows-1251
Swedish sv-SE SWS windows-1252
Mandarin
Chinese1

zh-CN MNC windows-936
(GB2312) or
windows-950
(Big5)

Hong Kong
Cantonese2

zh-HK CAH windows-950
(Big5)

1 “Mandarin Chinese GB” and “Mandarin Chinese B5” are also supported as valid 
languages; they also specify the native character set to be used.
2 “Hong Kong Cantonese B5” is also supported as a valid language; it also specifies the
native character set to be used.



Tips for using RealSpeak

Appendix G

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix G/315

Appendix: Tips for using RealSpeak

Operating System Restrictions

Each instance of RealSpeak requires a number of file handles which
are used for accessing among others the language database. Some
operating systems, such as Microsoft Windows, have a default limit of
file handles per process. If you have a large number of RealSpeak
instances, the application can run out of file handles. In order to
avoid this problem, ScanSoft recommends you to set the amount of
file handles to an appropriate value. For Microsoft Windows, you can
set this value by having your application issue the _setmaxstdio() C-
runtime call. See your compiler or operating system manual for more
information.
For Unix, the number of file handles can be increased by means of
the limit/ulimit commands. For more information about these
commands, refer to the man pages or to the compiler manual.

Optimal Audio Buffer size

For optimal performance in client-server mode, the audio buffer size
should be set to 4k (4096) bytes. This buffer is provided by the
application and is specified via the return value of the TTSDESTCB
typed Destination call-back function.

Limiting delays when internet fetching is used

When content such as input texts, user dictionaries and rulesets are
located on a Web server, this can result in delays when the content is
fetched for the first time. But since the internet fetch library uses a
(configurable) cache, the download time will be minimal if the cache
has been configured well (big enough, reasonable cache entry
expiration time) and the cache has been warmed up.
To warm up the cache, the application could perform a number of
dummy speak requests. For input texts, the content will already be
cached before the Destination call-back is called for the first time.
So during the warmup, the application can call the TtsStop function
from that moment on to speed up the warmup.
Audio content specified via the SSML <audio> tag, is always fetched
on message (normally a sentence) boundaries, but not necessarily
before the first call to the Destination call-back. User dictionaries and
rulesets can be loaded and unloaded to obtain a copy in the cache
without consuming RAM memory. If RAM usage is not a problem,
load them as soon as possible.



Tips for using RealSpeak

Appendix G

RealSpeak Telecom SDK V4.0 December 2005 ScanSoft Proprietary
Programmer's Guide Appendix G/316

Binary versus textual user dictionaries

If the application repeatedly loads/unloads one or more user
dictionaries (such as load it for a single speak request here and there),
then a binary dictionary loads faster. But once loaded, the run-time
access speed is the same. When loading all dictionaries at startup, it
doesn't really matter. When default dictionaries are specified in the
server configuration file (via the <default_dictionaries> element),
they are loaded/unloaded when the language (or voice) parameter is
updated via TtsSetParam(s) or when an engine instance is created.
The User Dictionary Editor (UDE) is the only way to obtain a binary
dictionary. Please check out the online help documentation that
comes with the UDE for detailed instructions.


